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a  b  s  t  r  a  c  t

The  use  of  digital  PCR  for quantification  of  nucleic  acids  is  rapidly  growing.  A  major  drawback  remains  the
lack  of  flexible  data  analysis  tools.  Published  analysis  approaches  are  either  tailored  to  specific  problem
settings  or fail  to take  into  account  sources  of  variability.  We  propose  the  generalized  linear  mixed  models
framework  as  a flexible  tool  for  analyzing  a wide  range  of  experiments.  We also  introduce  a  method
eywords:
igital PCR
tatistics
ata analysis
ixed models

eplicates
uantification

for  estimating  reference  gene  stability  to improve  accuracy  and  precision  of  copy  number  and  relative
expression  estimates.  We  demonstrate  the  usefulness  of  the  methodology  on  a complex  experimental
setup.

©  2016  The  Author(s).  Published  by Elsevier  GmbH.  This  is  an  open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

The number of publications on digital PCR (dPCR) have markedly
ncreased during the last decade, with a rapid growth of publi-
ations in the field of biomedical sciences in recent years. This
doption has in part been possible due to an increase of com-
ercially available, user-friendly instruments [1,2] and is further

timulated by positive reports on dPCR demonstrating the advan-
ages over quantitative PCR (qPCR) [3], particularly for applications
uch as low-level quantification [4,5], absolute quantification [4,5]
nd copy number variation (CNV) determination [6].

Despite the advantages and increasing popularity of dPCR and
s a consequence of the technique still being in its infancy, one
ajor drawback of dPCR remains the lack of dedicated data analysis

ools taking full advantage of the specific digital nature of the data.
ost published papers rely on data-analysis software provided by
ardware manufacturers. These software suites are typically black-
ox tools providing the user with a limited amount of information
n the algorithms. They furthermore do not allow the user to

∗ Corresponding author.
E-mail address: matthijs.vynck@ugent.be (M.  Vynck).

ttp://dx.doi.org/10.1016/j.bdq.2016.06.001
214-7535/© 2016 The Author(s). Published by Elsevier GmbH. This is an open access ar
d/4.0/).
analyze more complicated experimental setups such as the correct
use of technical replicates or the use of multiple reference loci for
determining CNVs, even though such approaches may  be advisable
[7–9].

Although several papers have been published that propose data
analysis methods, these methods have been developed to analyze
very specific experimental setups. For example, Whale et al. [6] and
Dube et al. [10] developed ad hoc methods for calculating CNVs, but
these methods can only be used to calculate CNVs using a single
reference locus and do not take into account interreplicate vari-
ability. Extending these methods to cope with other experimental
setups would require significant work, tailored to each of these spe-
cific designs. A major difficulty is the correct estimation of standard
errors and confidence intervals.

In this paper, we detail how the established generalized linear
mixed model (GLMM)  framework [11] can be used to analyze dPCR
data from a wide range of experimental setups, ranging from simple
experiments such as absolute quantification to complicated studies
such as CNV estimation with multiple reference loci normalization

and handling of variable numbers of technical replicates, while cor-
rectly accounting for various sources of variability. The basis of this
GLMM framework has recently also been described by Dorazio and
Hunter [12]. We  argue that known sources of variability should be
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ccounted for and that the approach of pooling counts of technical
eplicates used for analysis by Dorazio and Hunter [12] (among oth-
rs, e.g. Yu et al. [13]) may  lead to incorrect estimation of standard
rrors and confidence intervals.

Further, a novel approach for selecting stable reference loci for
NV studies from a pool of candidate reference loci is developed
nd successfully applied. An approach for reference gene selection
n relative expression experiments is also suggested.

To demonstrate the flexibility of the approach, our methodology
s used to analyze a dataset consisting of droplet digital PCR (ddPCR)
ata for 14 individuals who have been screened for chromosomal
bnormalities using 14 genes on 6 chromosomes. The performance
n terms of accuracy and precision is evaluated for calculating CNVs
sing both a single reference locus and multiple reference loci.

. Materials and methods

.1. Absolute quantification

dPCR splits a sample mixture into partitions. Each of these par-
itions is subsequently called as containing target nucleic acid, or
aving no target nucleic acid. A positive signal thus indicates that
ne or more target copies may  be present. As a consequence of the
andom partitioning of copies, the number of copies in a partition is
ssumed to follow a Poisson distribution with parameter � which
as the interpretation of the average number of copies per parti-
ion. If Y∗

j
denotes the unobserved number of copies in partition j

j = 1, . . .,  J, with J the number of partitions), then we  can write the
bserved digital outcome as the binary variable Yj:

j = min(Y∗
j , 1) =

{
0 if Y∗

j = 0

1 otherwise.
(1)

Having observed the digital outcomes, the � parameter of the
oisson distribution can be estimated from the probability of zero
opies, relying on the probability mass function of the Poisson dis-
ribution (Eqs. (2) and (3)):

{Y∗
j = 0} = �0

0!
exp(−�) = exp(−�) (2)

 = − log P{Y∗
j = 0} = − log P{Yj = 0} (3)

he final equality in Eq. (3) follows from the construction of the
inary outcomes (Eq. (2)). Since a probability of a binary event can
e estimated from simple counts, an estimate of � is given by

ˆ = − log
(

number of negative partitions
total number of partitions

)
. (4)

ˆ
 can also be obtained using a Generalized Linear Model (GLM).
he GLM for the unobserved counts Y∗

j
is specified by a Poisson

istribution with mean � related to a parameter ˇ0 through a log-
ink function,

og � = ˇ0. (5)

sing Eq. (3), the observed binary outcomes Yj can be described by
 binomial distribution with probabilities

P{Yj = 0} = P{Y∗
j

= 0} = exp(−�)
= exp(− exp(ˇ0))

P{Yj = 1} = P{Y∗
j

> 0} = 1 − exp(−�)

= 1 − exp(− exp(ˇ0)).

(6)
and Quantification 9 (2016) 1–13

Eqs. (6) state a GLM for a binomial distribution with a comple-
mentary log-log link. The more conventional model formulation
is:

log(− log(P{Yj = 0})) = ˇ0, (7)

where ˇ0 is the same as in Eq. (5). Since the digital outcomes Yj are

observed, GLM software can be used for estimating ˇ0. If ˆ̌ 0 denotes
the estimate, an estimate of � is then given by

�̂ = exp( ˆ̌ 0). (8)

Using Eq. (4) or Eq. (8) will result in the same estimate for �.
Assuming a constant volume of the partitions, say Vpartition, the

concentration can be estimated from the average number of copies
per partition (Eq. (9)):

ĉ = �̂

Vpartition
. (9)

To obtain a reliable estimate of the concentration, an experiment
is typically replicated. We  now define Y∗

ij
as the number of copies

in partition j of replicate i (j = 1, . . .,  Ji, with Ji the number of parti-
tions in replicate i, i = 1, . . .,  I, with I the number of replicates). As
before, the counts are not observable, but upon applying equation
(1), binary outcomes Yij can be calculated. To take the replicate vari-
ability into account, we  introduce a random effect for the replicate
in the Poisson model. Within a replicate, the counts are still Pois-
son distributed. The statistical model is formulated hierarchically.
In particular, within a replicate:

Y∗
ij | Ri∼Poisson(�i) (10)

where

log �i = ˇ0 + Ri, (11)

with Ri the effect of replicate i on the Poisson mean. These replicate
effects Ri are described by a normal distribution,

Ri∼N(0, �2). (12)

This model implies that the random effect terms are exchange-
able, which is warranted if replicates are considered as a random
sample from a larger population of potential replicates (see
Supplementary Material 4, Section 4).

The model results again in a binomial regression model with a
complementary log-log link for the observed digital outcomes. In
particular, within a replicate

log(− log(P{Yij = 0 | Ri})) = ˇ0 + Ri, (13)

with ˇ0 and Ri as before. The model is a special case of a GLMM [11].
Statistical software is available for estimating the model param-
eters (e.g. R [14], an environment often used for analysis of PCR
experiments [15]), including random effect variances [16].

The objective is to estimate the mean number of copies, aver-
aged over all replicates, i.e. E{Y∗

ij
} is the quantity of interest for

absolute quantification. Statistical theory (Supplementary Material
4, Section 1) gives

E{Y∗
ij } = exp(ˇ0 + 0.5�2). (14)

From the estimate of ˇ0 (say ˆ̌ 0), the estimate of the variance
�2 of the random effect (say �̂2) and from Eq. (9) a concentration
estimate can subsequently be calculated as

ĉ = exp( ˆ̌ 0 + 0.5 �̂2)
. (15)
Vpartition

The statistical software also gives the estimated standard
errors of the estimates ˆ̌ 0 which can be used for the calcula-
tion of an approximate confidence interval of the concentration
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Supplementary Material 4, Section 3). Example analyses are given
n Sections 2.1 and 3.2 of Supplementary Material 1.

.2. Copy number variation

For the estimation of CNV, data on both a target and at least
ne reference must be available. Several experimental designs are
ppropriate for obtaining target and reference measurements. Fig. 1
hows six examples, ranging from single reference settings with
ingle channel experiments (panel A) or duplex experiments (panel
) to multiple reference studies with single channel (panel C) or
uplex (panel D, E) or multiplex (panel F) experiments. In this sec-
ion, a GLMM methodology is outlined that is applicable to all of
hese designs, also in the presence of replicates.

The general guideline for obtaining valid statistical estimation,
rror propagation and hypothesis testing, is that the data analysis
ethod should account for dependencies and sources of variability

mplied by the experimental setup. For example, as in Section 2.1,
andom replicate effects should be included in the model to take
are of the dependence between droplets within the same replicate.

.2.1. Single reference designs
The same notation (Yij and Y∗

ij
) as before is used, but the partition

ndex j may  now refer to a measurement which can be from a target
r a reference. The distinction between target and reference is made
y a dummy  regressor Xij which is defined as zero when partition (i,

) comes from the target and one when it comes from the reference.
or the designs A and B (Fig. 1), the model for the unobservable
umber of copies is written as

∗
ij | Ri∼Poisson(�ij) (16)

here

og �ij = ˇ0 + Xijˇ1 + Ri (17)

nd

i∼N(0, �2). (18)

hus within replicate i, the mean number of target copies per par-
ition again equals exp(ˇ0 + 0 × ˇ1 + Ri), and the mean number of
eference copies per partition equals exp(ˇ1 + 1 × ˇ1 + Ri).

Let ctarget,i and cref,i denote the concentrations of target and ref-
rence in replicate i, respectively, and Nb the ploidy of the organism.
or design A (Fig. 1), the CNV based on replicate i for the target and
eplicate i′ for the reference, is given by

NVi,i′ = ctarget,i

cref,i′
Nb = exp(ˇ0 + 0 × ˇ1 + Ri)/Vpartition

exp(ˇ1 + 1 × ˇ1 + Ri′ )/Vpartition
Nb

= exp(−ˇ1 + Ri − Ri′ )Nb. (19)

The overall CNV is then given be the average of CNVi,i′ over
ll replicates (see Supplementary Material 4, Section 2 for details),
esulting in

NV = E{CNVi,i′ } = exp(−ˇ1 + �2)Nb. (20)

s before, the model parameters may  be estimated by reformulat-
ng the model for the digital outcomes Yij. In particular, a GLMM

ith a complementary log-log link is obtained:

og(− log(P{Y = 0 | R })) = ˇ + X ˇ + R , (21)
ij i 0 ij 1 i

ith ˇ0, ˇ1 and Ri as in model (17).
For design B (Fig. 1), the CNV based on replicate i, which now

ontains droplets with both target and reference (duplex), is given
and Quantification 9 (2016) 1–13 3

by

CNVi = ctarget,i

cref,i
Nb = exp(ˇ0 + 0 × ˇ1 + Ri)/Vpartition

exp(ˇ1 + 1 × ˇ1 + Ri)/Vpartition
Nb

= exp(−ˇ1)Nb. (22)

Note that the random effect cancels out and that the CNV does not
depend on i. Hence, an overall CNV estimate is given by exp(− ˆ̌ 1)Nb,
with the estimates again calculated from the GLMM with a com-
plementary log-log link. The random effect can however not be
omitted altogether, as it influences the variance on the fixed effect
parameters, and thus the inclusion of the random effect is essential
for a correct error propagation.

2.2.2. Multiple reference designs
The model can be further extended to contain multiple reference

loci. The number of copies and the deduced binary outcome for
partition (i, j) are denoted by Y∗

ijk
and Yijk, respectively, in which

the index k refers to the reference k = 1, . . .,  K, with K the number
of reference loci and with k = 0 referring to the target. Consider the
dummy  Xijk, which is defined as one when the signal belongs to
the kth reference and zero when the signal comes from the target.
Reference-to-reference differences are allowed by making use of
nested random effects.

For designs C and D, for a given replicate i and for a given target
or reference k, the Poisson model for the unobserved counts Y∗

ijk
has

log-mean

log E{Y∗
ijk | Sk, Ri(k)} = log �ijk = ˇ0 + ˇ1Xijk + SkXijk + Ri(k) (23)

with Sk the effect of reference k on the log-mean, and Ri(k) the effect
of the ith replicate of the experiment with the PCR mix  contain-
ing reference k (or k = 0 for target in design C). The variability of
these two random effects are described by independent normal
distributions:

Sk∼N(0, �2
1 ) and Ri(k)∼N(0, �2

2 ). (24)

Hence, Sk is a random effect for the between reference locus
variation and Ri(k) is a random effect for the interreplicate variation
nested within a given target or reference. Note that the model for-
mulation assumes that the random effects are exchangeable (see
Supplementary Material 4, Section 4 for more information).

The same model applies to design E, except that the index k in
Ri(k) should be replaced by an index k* which is an indicator of the
unique PCR mix  (each row in panel E of Fig. 1 represents a unique
PCR mix). The model for design F is also similar, except that the
replicate effect Ri(k) does not depend on reference k, because in this
multiplex experiment all references are potentially included in all
partitions, i.e. in each replicate all references are included in the
PCR mix. Hence, the nested random effect Ri(k) in model (23) has to
be replaced by Ri.

As before, the model parameters can be estimated from the cor-
responding GLMM for the binary outcome:

log(− log(P{Yijk = 0 | Sk, Ri(k)})) = ˇ0 + ˇ1Xijk + Sk + Ri(k). (25)

For design C the CNV is first given for target versus a single
reference k, based on replicates i and i′:

CNVi,i′;k = exp(ˇ0 + Ri(0))
exp(ˇ1 + ˇ1 + Sk + Ri′(k))

Nb

= exp(−ˇ1 − Sk + Ri(0) − Ri′(k))Nb. (26)
The overall CNV is obtained by averaging over all replicates and
all references (see Supplementary Material 4, Section 2 for details):

CNV = E{CNVi,i′;k} = exp
(

−ˇ1 + 1
2

�2
1 + �2

2

)
Nb. (27)
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Fig. 1. Experimental designs for calculating copy numbers using digital PCR. (A) Singleplex experiments with a single reference gene. (B) Duplex experiments with a single
reference gene. (C) Singleplex experiments with multiple reference genes. (D) Duplex experiments with multiple reference genes and repeated analysis of the target gene.
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E)  Efficient duplex experiments with multiple reference genes. (F) Multiplex exper
eplicate. The circles represent partitions and they show whether a target or a refe
ith  the letter R, the total number of replicates is given by I. Setup-specific subscrip

For design D, which allows for CNV calculation w.r.t. a single
eference k within a replicate i (duplex), we first give

NVik =
exp

(
ˇ0 + Ri(k)

)
exp

(
ˇ1 + ˇ1 + Sk + Ri(k)

)Nb = exp(−ˇ1 − Sk)Nb. (28)

ote that the replicate effect has been eliminated (due to com-
ining target and reference k in the duplex). After averaging over
eferences, the overall CNV becomes

NV = E{CNVik} = exp
(

−ˇ1 + 1
2

�2
1

)
Nb. (29)

For design E, the CNV w.r.t. a single reference measured in
uplex with the target is given by equation (28). CNVs for the other

 − 1 references measured in duplex with respect to one another

re given by equation (26). An overall CNV is obtained as

NV = exp
(

−ˇ1 + 1
2

�2
1

)
Nb

(1 + exp(�2
2 )(k − 1))

k
.  (30)
s with multiple reference genes. For each design, a single droplet is shown for each
 is included in either singleplex, duplex or multiplex. The replicates are indicated
ime, asterix) as used in the model specifications of Section 2.

For design F (multiplex) we  also start with the CNV calculation
w.r.t. a single reference k within a replicate i:

CNVik = exp(ˇ0 + Ri)
exp(ˇ1 + ˇ1 + Sk + Ri)

Nb = exp(−ˇ1 − Sk)Nb. (31)

Also here the replicate effect is eliminated. After averaging over
references, the overall CNV becomes

CNV = E{CNVik} = exp
(

−ˇ1 + 1
2

�2
1

)
Nb. (32)

Detailed derivations are available in Supplementary Material
4. Example analyses in R are given in Sections 2.2 and 3.3 of
Supplementary Material 1.

2.3. Reference gene stability

Reference locus stability for CNV estimation is calculated for

each reference locus k (k = 1, . . .,  K) as

Stabilityk =
∑

l ∈ Sk

(
ˆ̌ 2

1kl + Var( ˆ̌
1kl)

)
K − 1

(33)
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here Sk is the set {1, . . .,  K} \ k. If only data from one sample are
vailable, the ˆ̌

1kl are parameter estimates that result from fitting
he model

og �ij = ˇ0kl + ˇ1klXij + Ri (34)

ith Ri ∼ N(0, �2) and Xij defined as zero when partition (i, j) comes
rom reference k and one when it comes from reference l. For fit-
ing model (34) only the data from references k and l are used. An
xample analysis is given in Section 2.3 of Supplementary Material
.

For across-sample stability in the CNV case, the model needs to
ccount for variability between samples: similarly to the introduc-
ion of the between-reference gene random effect in Section 2.2,
e introduce a between-sample random effect Ss that accounts for

he sample-specific effects. Consequently, model (34) is replaced
y

og �ij = ˇ0kl + ˇ1klXij + Ri(s) + Ss (35)

ith Ri(s)∼N(0, �2
1 ), Ss∼N(0, �2

2 ) and Xij defined as before. Again
nly the data from references k and l are used.

The rationale for this stability measure is based on two  argu-
ents. First, when given a set of candidate reference genes in a

NV setup, we expect these reference genes to have similar copy
umbers. If two candidate reference genes, say k and l, are in agree-
ent (e.g. they both show a close to diploid copy number in e.g. a

uman sample), the estimate ˆ̌
1kl is expected to be close to zero,

r, equivalently, the ratio of their estimated concentrations will be
lose to one (Eqs. (20) and (22)). Thus, a reference k that gives a
arge

∑
l ∈ Sk

ˆ̌ 2
1kl

is said to be a biased reference.

Second, a good reference gene will be stable across replicates
r samples, warranting the inclusion of the Var( ˆ̌

1kl) estimate: if
opy numbers across replicates or samples are highly variable, this
ill be reflected in a large variability of ˆ̌

1kl (i.e. a large Var( ˆ̌
1kl)).

hus, references that are highly variable are less ideal and will be
enalized. A detailed discussion is presented in Section 3.2.

To allow for different quantities of reference genes in a relative
xpression scenario (see detailed discussion in Section 3.2), model
35) is used, but the relative expression gene stability is simplified
o

tabilityk =
∑

l ∈ Sk
Var

(
ˆ̌

1kl

)
K − 1

(36)

.e. only taking variability into account.

.4. Generic formulation

Generally, the model can be written as a combination of fixed
ffect parameters – such as those of target and reference genes but
lso confounders or baseline variables, for example, age and gender

 and random effect parameters such as interreplicate variation,
nterreference gene variation but also to account for e.g. variation
etween multiple laboratories. The general model can be written
s

og �. = ˇ0 + ˇ1X1. + · · · + ˇpXp. + Z1. + · · · + Zq. (37)

or p fixed effects and q random effects, where the subscripts which
re here denoted by ·, refer to the variables used for constructing
he X and Z variables. The model can further be extended to allow
or interactions, and random effects may  be nested if implied by
he study design.

One example of such an extension could be relative concentra-

ion estimation with multiple patients and with an effect of gender
n the target concentration:

og �ij = ˇ0 + X1ijˇ1 + X2ijX3ijˇ2 + Z1i (38)
and Quantification 9 (2016) 1–13 5

for partition j obtained from patient i, X1ij is one if partition j of
patient i is from the reference gene and zero if it is from the target
gene, X2ij is zero if patient i is male and one if the patient is female
and X3ij is zero for reference genes and one for target genes. The
CNV for a male remains as in Eq. (22), but for females it becomes:

̂CNV = ĉtarget

ĉref
Nb = exp( ˆ̌ 0 + ˆ̌ 2)

exp( ˆ̌ 0 + ˆ̌ 1)
Nb = exp( ˆ̌ 2 − ˆ̌ 1)Nb. (39)

Similarly, random effects can be added to account for e.g. strat-
ification in multicenter trials. Absolute concentration estimation
with an age effect, a patient effect and a center effect, could be
modelled as:

log �ijc = ˇ0 + X1ijcˇ1 + Z1c + Z2i(c) (40)

where for center c, patient i and partition j, ˇ1 is the age effect, Z1c is
the random center effect (with variance �2

1 ) and Z2i(c) is the random
patient effect (nested within the center effect, with variance �2

2).
Using results similar as in Eq. (14), the mean concentration for a
patient of age age can then be estimated as

ĉ = �̂/Vpartition = exp( ˆ̌ 0 + age × ˆ̌ 1 + 0.5 �̂2
1 + 0.5 �̂2

2 )
Vpartition

. (41)

For all models, the corresponding binary GLMM with comple-
mentary log-log link function is available in statistical software (e.g.
R [14,16]).

2.5. Case study data

14 genes of interest (13 target loci located on chromosomes 13,
18, 21, X and Y along with a single reference locus for normalization,
RPP30,  located on chromosome arm 10q for normalization) from 10
samples with chromosomal abnormalities and 4 control samples
were analyzed. DNA was extracted from blood samples using the
QIAamp DNA Blood Mini Kit (Qiagen) according to the manufac-
turer’s instructions, after which DNA concentration was measured
using UV spectrophotometry (Nanodrop). All patient samples and
healthy control samples were diluted to 5 ng/�l using nuclease-
free water and 10× carrier solution (Roche’s tRNA from brewer’s
yeast, cat-no 10109517001, 50 ng/�l) making the final tRNA car-
rier concentration 5 ng/�l. The no template control (NTC) sample
also contained 5 ng/�l carrier. Two �l of the diluted DNA  sample
was added into the final ddPCR reaction resulting in a 10 ng sam-
ple input. Primers and probes were diluted to a work solution of
5 �M and 2 �M,  respectively, using 1× IDTE buffer, pH8 (cat-no
11-05-01-09). One ddPCR master mix  was  created per assay/probe
pair (FAM/HEX or VIC) to perform 3 reactions per sample, control
and NTC. One 20 �l reaction consisted out of following reagents:
10 �l 2× ddPCR Supermix for probes (Bio-Rad; cat-no 1863010),
250 nM of each forward and reverse primer (final concentration),
100 nM of each probe (final concentration), and 2 �l of sample
DNA (5 ng/�l, 10 ng final input) or nuclease-free water as NTC. The
20 �l ddPCR reaction mix  was added to the droplet generator car-
tridge together with 70 �l droplet generation oil (Bio-Rad, cat-no
1863005). Droplets were generated using a Bio-Rad QX100 droplet
generator, followed by gentle transfer to a Twin.tec semi-skirted
96-well PCR plate. Using a Bio-Rad T100 thermal cycler, the follow-
ing temperature cycling program was used for target amplification:
10 min  95 ◦C activation, 40 cycles of 30 s 95 ◦C and 1 min  59 ◦C,
followed by 10 min  98 ◦C. After PCR amplification, the plate was
analyzed using a QX100 droplet reader using Quantasoft software.
Data was exported as a CSV file for further processing.
Primers and hydrolysis probes were designed using an in house
developed primerXL assay design engine (Lefever et al., in prepara-
tion; http://www.primerxl.org), avoiding SNPs under the primer
and probe annealing sites, avoiding secondary structures, and

http://www.primerxl.org
http://www.primerxl.org
http://www.primerxl.org
http://www.primerxl.org
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ssessing primer specificity using genome wide Bowtie [17] primer
lignment, avoiding primers that have fewer than three mis-
atches to a possible off-target homologous sequence. All primers

nd probes were ordered at Integrated DNA Technolgies, except
or the RPP30 probe which was ordered from Life Technologies.
equences are available in Supplementary Table 1.

To allow comparison with digital PCR results, samples were also
nalyzed using arrayCGH, karyotyping and/or FISH in an ISO 15189
ccredited lab at the Center for Medical Genetics, Ghent University
ospital as described before [18–20].

.6. Data analysis

To assess the influence of ignoring interreplicate variation in the
ase of absolute quantification, GLM and GLMM models were fitted.
he GLM model (Eq. (5)) did not account for interreplicate varia-
ion, and thus the analysis was based on pooling the negative and
ositive droplet counts. The GLMM (Eq. (11)), on the other hand,
as fitted using a random effect to account for the interreplicate

ariation. Estimates of both approaches and their variances were
ompared.

Using the proposed framework, the copy numbers for each of
he target loci was calculated by using the RPP30 locus as a refer-
nce (model equation (20) or (22), Fig. 1, panel A or B, depending
n the target locus). Copy numbers were also calculated, again by
onstructing GLMM models, by using all loci located on autosomal
hromosomes with close to normal diploid copy number as ref-
rences (model equation (30), Fig. 1, panel E), except for sample
0 where no loci with normal diploid copy number were distin-
uishable. Model evaluation was done by calculating the mean
bsolute deviation from the closest integer copy number over all
on-reference locus copy numbers in a given sample.

To assess accuracy and precision with an increasing number
f reference loci, target locus copy numbers were estimated by
equentially adding reference loci. To limit computational burden
his was done for both a best case scenario, where the most stable
eference loci were added first, and a worst case scenario, where
he least stable reference loci were added first. After each step of
dding a reference locus, accuracy was assessed by calculating the
ean absolute deviation from integer copy numbers of the targets.

recision was assessed by calculating the mean width of all target
5% confidence intervals.

For each of the patient samples in the case study, reference locus
tability was determined using the stability measure described in
ection 2.3 (model (34)). Retaining the most stable reference loci
nly, final copy numbers were determined for each of the target
oci (Eq. (30), setup as in Fig. 1, panel E).

. Results and discussion

There is a clear need for more flexible data analysis tools for dPCR
xperiments. The GLMM framework is ideally suited to accom-
odate a wide range of dPCR experimental setups. As outlined

n Section 2, the framework can be used for absolute quantifica-
ion, CNV calculation and gene expression analysis (with or without
eplicates), but it can also accommodate other applications such
s mutation quantification both in singleplex, duplex or higher
ultiplexing mode, making it compatible with all existing dPCR

nstruments. As further demonstrated in Section 2, the framework
lso allows adjusting for e.g. clinical baseline covariates such as age
r gender, including treatments effects, or analyzing multicenter

rials.

The type of the data we have collected, allows us to assess dif-
erences between classical approaches and those described in this
aper. The initial setup of the experiment was to study 13 target loci

those with close to diploid copy number. Loci with a single or three copies are not
displayed. For each reference locus and each sample, technical replicates are shown.
The  graphs demonstrate the presence of substantial variability between technical
replicates, between samples and between reference loci.
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long with a single reference locus for normalization. Because the
atients in this study suffer from only one type of chromosomal
bnormality, loci located on the non-affected chromosomes will
till retain their normal copy number status. In principle, this allows
he use of loci located on unaffected chromosomes as reference
oci, in addition to the RPP30 reference locus. Studying chromo-
omal loss or gain furthermore has the advantage that under ideal
eaction conditions and assuming no mosaicism, copy numbers are
xpected to be integers. This is in contrast to e.g. expression levels
hat may  take any (non-integer) value. This property of the study
llows to measure accuracy as a deviance from an integer copy
umber.

.1. Variance modelling

The need for modelling the different sources of variability
ecomes apparent from the estimates as obtained from the GLM
odels. As evidenced by Fig. 2 there is often substantial variabil-

ty between technical replicates as well as between reference loci.
ot accounting for these sources of variability may  lead to overly
ptimistic uncertainty estimates. This is observed when compar-
ng the uncertainty estimates of a naive pooling strategy (ignoring
nterreplicate variability) with those of a GLMM model accounting
or interreplicate variability in an absolute quantification scenario.
ig. 3 shows a histogram of the ratio of the variance of the abso-
ute quantification obtained with the pooling strategy relative to
he variance calculated from the GLMM method. Even though the
ariability estimates of both methods are often close in our exper-

mental data (in a majority of samples the fold difference was
pproximately one), the variability was underestimated up to a
actor 10 when using a naive pooling strategy (Fig. 3). It is thus rec-
mmended to always incorporate the interreplicate variability to
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ig. 3. Importance of modelling variability. Histogram of the ratio of variances of the para
han  one indicates that the pooling method is too optimistic: the variance estimate of the
ariation. Ignoring this variation results in a variance estimate that is too small and con
ccount for the possibility of variation between replicates to get an accurate variance esti
and Quantification 9 (2016) 1–13 7

avoid overoptimistic variance estimates. This has also been demon-
strated by Jacobs et al. [21] through simulation: pooling replicate
data results in faulty confidence intervals, while accounting for
interreplicate variation results in correct variance estimates and,
consequently, correct confidence intervals.

The same holds true for accounting for variability between refer-
ence loci: there is often a discrepancy between different candidate
reference loci (Fig. 2) and ignoring this may result in an underesti-
mation of the uncertainty on relative quantity or CNV estimates.

Dorazio and Hunter [12] argue that accounting for additional
sources of variability should only be considered if concentrations
are expected or can be shown to be different. One can argue that
due to the imperfectness of e.g. sample processing in a typical
experiment (e.g. using replicates) such sources of variation will
always be present and should always be considered [21]. Dorazio
and Hunter [12] furthermore propose the use of deviance statistics
to assess model goodness of fit. They argue that their model is not
worse than the saturated model based on this deviance statistic, but
they do not make a comparison with models accounting for addi-
tional sources of variability such as interreplicate variability. Even
if such a comparison would demonstrate that a model not account-
ing for interreplicate variability is not significantly worse than one
accounting for interreplicate variability, this may be a weak con-
clusion as goodness of fit tests may  suffer from a lack of power [22].
For example, using our data we  found that a lack of fit was  detected
only when the uncertainty using the GLMM method was approxi-
mately at least three times that of the uncertainty estimated using
the GLM method (results not shown). When unsure about the pres-

ence or power of detecting additional sources of variation, it is thus
better to be cautious and to allow for the possibility of these addi-
tional sources of variability, rather than to take the risk to obtain
too optimistic results.

ance ratio

0.6 0.8 1.0 1.2

meter estimates of the naive pooling method relative to the GLMM. A ratio smaller
 pooling method is smaller than the variance estimate accounting for interreplicate
sequently confidence intervals that are too narrow. It is recommended to always
mate.
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bnormalities. A low mean absolute deviation indicates that the obtained estimate
n  a drastic increase in accuracy if the single reference locus was  biased. If it is not b

.2. Multiple reference loci

It is recommended to use multiple reference loci, for relying
n a single reference locus for calculating a CNV may  result in
educed accuracy [7,23]. Especially in the case of e.g. erroneous
mplification (e.g. due to inhibition) or copy number alteration of
he candidate reference locus, estimated copy numbers may  be far
rom accurate. This is clearly observed in the results from the case
tudy, particularly in sample 15: when relying solely on the locus
ocated on the RPP30 gene, which is a popular reference gene in
NV studies [24], an underestimate of copy numbers of target loci

s obtained. This has also been observed in other studies. For exam-
le, Versluis et al. [8] observed a gain of the TERT reference gene in
wo samples, resulting in erroneous results. They argue that relying
n 3 to 4 reference loci would circumvent this problem.

These problems can indeed be remediated by relying on mul-
iple reference loci, in which case e.g. erroneous amplification of
ne of the reference loci will only partially influence the estimated
opy number. This is illustrated in Fig. 4 where relying on the
redetermined reference locus on the RPP30 gene often results in
uch larger mean absolute deviations from integer copy numbers
hen compared to relying on multiple reference loci. In those sam-
les where the single locus normalization performs much worse,
he RPP30 locus is unsuitable for normalization (Supplementary

aterial 2).
The accuracy of the estimate can be further improved by using

 selection of multiple stable reference loci. This can also be done
sing the GLMM model (possibly accounting for interreplicate vari-
bility). Our measure of stability takes both bias and variance in
ccount. Because stable reference loci are expected to have the
ame copy number, the ratio of their concentrations should be close
o one, or, in terms of model (34) or (35), the parameter estimates
ˆ

1kl should be close to zero. Hence, a ratio of one, or a parame-
er estimate of zero corresponds to no bias. By making all pairwise
omparisons between a reference locus and all other reference loci,
nd calculating the sum of the squared deviations from zero, an
stimate of the total squared bias of the reference locus is obtained:

ptimal reference loci will have a low bias while loci with large bias
ndicate that they are not in agreement with the other candidate
eference loci. Variance is taken into account by using the estimate
f the variance of the bias parameter estimate: loci that have a more
lose to the expected copy numbers. Using multiple stable reference loci can result
cial, the difference with the single reference locus is small.

variable concentration across replicates or samples (as propagated
in the variance of the estimate) are less ideal reference loci.

The stability measure is thus penalising aberrant reference loci
in two ways: loci that have a concentration deviating from other
reference loci will be penalised as well as those with higher vari-
ance. Optimal reference loci are both in accordance with other
reference loci and show little variation when replicated. Reference
loci having similar bias will be ranked from lower to higher vari-
ance, and likewise loci with similar variance will be ranked from
lower to higher bias. Fig. 5 indicates that for example for patient
sample 5, the genes LNX2, LAMA3 and C18ORF62 are most stable
and can be used as reference loci.

When sequentially adding reference loci from stable to less sta-
ble (best case scenario), the uncertainty of the target estimate first
decreases, but increases again when more unstable reference loci
are added (U shape of the curve, Fig. 5). Excluding unstable refer-
ence loci may thus lead to a more accurate estimate while inclusion
of multiple stable reference loci typically also enhances the pre-
cision of the estimate. When all reference loci are stable, more
reference loci means less uncertainty and exclusion of reference
loci is disadvantageous (Supplementary Material 2 Figs. 7 and 8).

Sequentially adding reference loci in reverse order (worst case
scenario), i.e. using one or more less stable reference loci, may  result
in severe bias (Fig. 5): only when the more stable reference loci are
added to the pool of reference loci the bias gets close to that of
the best case scenario. Even though the bias may converge to that
of the best case scenario when using just a few reference loci, the
uncertainty of the estimate may  still remain higher than what is
observed under a best case scenario.

Relative expression stability determination necessitates a dif-
ferent approach as the ratio of reference gene concentrations is
generally not close to one, but should be stable across all samples
[7]. Taking a bias parameter (deviation from a ratio of one) into
account would wrongly discount good reference genes for relative
expression estimation. We  suggest a modified stability criterion for
this scenario, taking only variability of the ratio into account. Thus,
genes that have a variable concentration ratio across samples and

within samples (technical replication) will be considered less ideal
than genes displaying a stable ratio across and within samples. This
approach is similar to the widely adopted stability measurement
described by Vandesompele et al. [7].
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nd  omitting the less stable reference genes. In this case, the optimal number of ref
eference loci in sample 5. Loci on LNX2, LAMA3 and C18ORF62 are more stable than

.3. Case study results

Copy numbers were measured in duplex (Fig. 1E) for 10 patient
amples and analyzed using the appropriate models given in

ection 2. A summary of all obtained aberrations is listed in Table 1.

 full list of estimated copy numbers and confidence intervals is
vailable as Supplementary Table 2. For 9 out of the 10 samples at
east one target locus (located on the aberrant chromosome) was
e genes is 3 as the uncertainty is lowest in this case. Bottom: Stability of candidate
thers.

confirmed, i.e. the 95% confidence interval contained the integer
copy number. In those 9 samples there was also a clear aberra-
tion of the non-confirmed loci located on the chromosome with
the aberration, supporting the evidence for the confirmed loci (Sup-

plementary Table 2). Sample 10 displayed an unusual profile which
we were unable to identify (no loci with (close to) normal diploid
copy number). The obtained aberrations using ddPCR correspond to
those obtained using state-of-the-art methods (karyotyping, FISH,
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Fig. 6. Copy numbers in sample 15. Copy numbers in sample 15 after normalization using the RPP30 locus (accounting for interreplicate variability). There appears to be a
general underestimation of the copy number, which may  be due to aberrant quantification of the RPP30 locus: the measured concentration of the RPP30 locus is too high, so
that  the copy number of the target loci, expected to have two or three copies, are all unde

Table 1
Overview of detected chromosomal abnormalities with confirmed loci.

Sample Detected aberration Confirmed loci

5 Chromosome 21 trisomy CLIC6
6  Chromosome 21 trisomy DSCR3,  SYNJ1
9  Isochromosome Xq AMELX

10  – –
13  Chromosome 18 trisomy C18ORF62,  LAMA3
15  Chromosome 18 trisomy C18ORF62,  LAMA3, SMCHD1
16  Chromosome 21 trisomy CLIC6, DSCR3,  SYNJ1

a
w
(
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o
f
w
t
p
t
S
i

18 Chromosome 18 trisomy LAMA3
19  Isochromosome Xq AMELX, IL13RA1, ATP11C
20  Chromosome 21 trisomy CLIC6, DSCR3,  SYNJ1

rrayCGH), except for the previously mentioned sample 10 that
as not identifiable using our ddPCR results (identified to be a 45,X

Turner syndrome) sample using karyotyping, FISH and arrayCGH).
We discuss the case of patient sample 15, but the approach for

he other samples is similar (Supplementary Material 3). The setup
f the study was to assess chromosomal aberrations, i.e. deviations
rom diploid copy numbers on 13 target loci. The reference locus
as located on the RPP30 gene. The results of normalization using

he RPP30 locus (accounting for interreplicate variability) is dis-

layed in Fig. 6. It is clear we are dealing with a sample belonging
o a female (absence of positive droplets of the Y chromosome loci,
upplementary Table 3), but all copy numbers seem to be deviat-
ng: there is a general underestimation of the copy number, which
restimated.

may  be due to aberrant quantification of the RPP30 locus. It can fur-
thermore be seen that the C18ORF623, LAMA3 and SMCHD1 loci (all
located on chromosome 18) seem to have a higher copy number
than loci located on the other chromosomes and that a chromo-
some 18 trisomy is likely. We  thus use the loci on chromosomes
X, 13, 21 and the locus on RPP30 as candidate reference loci and
determine the stability of these loci as described in the Materials
and Methods section. The stability plot (Fig. 7) indicates that the
loci on LNX2, IL13RA1, SYNJ1, CLIC6, ITGBL1 and DSCR3 are of similar
stability, with rising instability thereafter for the loci on ATP11C,
RPP30 and AMELX.  The latter three are thus excluded as reference
loci and the copy numbers of the three chromosome 18 loci recal-
culated using the six stable reference loci. The results are shown in
the bottom panel of Fig. 8: the 95% confidence intervals of the mul-
tiple reference locus normalized results encompass the expected
integer copy number for all three loci for a trisomy 18 case.

3.4. Comments and further research

Even though the assumption of only one chromosomal aberra-
tion turned out to be correct in our case study, it is generally to
be recommended to determine candidate reference loci upfront.

For CNV determination it will not always be clear whether e.g.
a non-integer increase in a chromsome 18 loci combined with
a non-integer decrease in chromosome 13 loci corresponds to a
chromosome 18 trisomy or a chromosome 13 monosomy. This can
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he  loci on ATP11C, RPP30 and AMELX.

urter be complicated due to contamination of sample material by
.g. maternal DNA. When using the framework for detection of non-
nteger copy numbers, the reference locus selection approach used
n our case study can no longer be used and determination of stable
eference loci upfront is needed.

We  evaluated our method by calculating a deviation measure
rom integer copy numbers, assuming that the samples did not dis-
lay any mosaicism. This approach is only valid under the ideal
ircumstances of no mosaicism, no contamination, . . .and devi-
tion from this ideal scenario may  have affected our case study
ndings.

We demonstrated that accounting for variation between repli-
ates and/or reference genes is necessary to obtain correct standard
rrors of estimated absolute or relative quantities. These are
ources of variations that can be accounted for in a majority of

xperiments as the use of replicate experiments and multiple refer-
nce genes are nowadays widely implemented. We  want to stress
hat there are additional sources of variation, and depending on
he experimental setup these can also be taken into account by
e.g. adding additional random effects for plate effects, run effects,
cartridge effects, . . .

3.5. Software implementation

R code and a tutorial demonstrating the implementation of
these models is available as Supplementary Material 1: we give
examples of how to analyze different types of data using the
models proposed in this manuscript. By providing easy to use
functions, the practitioner is able to determine reference gene
stability and perform absolute quantification (with or without
replicates) and CNV/relative expression analysis (with one or more
reference genes and with or without replicates) with a few lines
of code. Additionally, a Shiny web application is available at

http://antonov.ugent.be:3838/dPCR/ that does not require any type
of programming, but relies on a spreadsheet-like data input and
point and click interface. A manual for using this web  interface is
also available (Supplementary Material 5).
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Fig. 8. Effect of normalization strategy. Effect of normalization strategy on the esti-
mated copy numbers of 3 loci on chromosome 18 for a patient with chromosome
18  trisomy. Top: a single reference locus is used (RPP30), bottom: three reference
loci are used simultaneously. When using multiple reference loci the copy numbers
are on average closer to the expected value of three (i.e. less bias). Error bars denote
95% confidence intervals, whereby the multiple reference locus normalized results
encompass the expected integer copy number for all three loci. Using an unstable
(biased) single reference locus may  result in biased copy number estimates. Relying
o
o
w

4

t
t
i
i
a
n

w
s
e
p

w
n
b
r
s
a

C

[

[

[

[

[

[

[

[

[

[

[

n  multiple reference loci typically has the advantage that the bias is reduced: if one
f  the reference loci is biased, this effect is partially cancelled by averaging together
ith two stable reference loci. See Supplementary Material 3 for more examples.

. Conclusion

Currently available methodology and software could be used
o analyze e.g. experiments with multiple reference genes, but
hese methods would not properly account for sources of variability
ntroduced by these specific designs. The data analyses presented
n this paper suggest that not accounting for various sources of vari-
bility can result in extremely unreliable estimates of variability of
ucleic acid concentrations or copy numbers.

We introduce a general framework that covers the analysis of a
ide range of experimental setups, correctly accounting for various

ources of variability and allowing researchers to analyze data from
xperiments for which previously no appropriate methods were
roposed.

A method for reference gene selection relying on this frame-
ork is suggested, allowing for an improved estimation of copy
umbers or relative quantities: findings indicate that selecting sta-
le reference genes may  be beneficial in two ways: (i) bias may  be
educed, (ii) uncertainty can be decreased by selecting a suitable
ubset. User-friendly R scripts, a Shiny web interface and tutorials
re available to facilitate the use of the methodology.
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