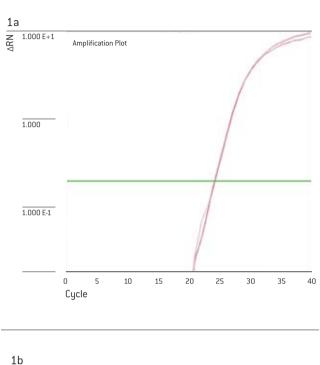
Lonza

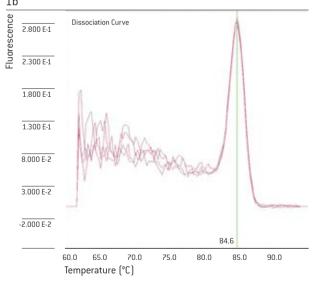
White Paper:

StellARray[™] Gene Expression System

Revealing Profiles with Unbiased Significance

Application Examples


Daniel Shaffer, Aaron Brown, William Olver, Bar Harbor BioTechnology, Inc. and Marjorie Smithhisler, Lonza Walkersville, Inc.


Abstract: In this paper, we present three application examples demonstrating the utility of the StellARray™ Gene Expression System to reveal gene expression level changes in diverse biological contexts such as toxicology, cancer, and stem cell differentiation. By combining Clonetics® and Poietics[®] Primary Human Cells with the StellARray[™] Gene Expression System, all from Lonza, the researcher is provided with a synergistic system to reveal gross and subtle changes in gene expression when analyzing in vitro models of human tissues. This is accomplished easily in 96- and 384-well formatted StellARray™ gPCR Arrays using a standard qPCR instrument and a generic SYBR® Green-based Reagent Master Mix. The Global Pattern Recognition[™] (GPR) Data Analysis Tool is optimally suited to generate a ranked list of significantly changed genes within a qPCR dataset. GPR overcomes the inconsistencies associated with conventional single gene normalization procedures by eliminating a priori normalizer selection. Overall, the results show how the StellARray[™] Gene Expression System eliminates false positives and provides TRUE results that are backed by a rigorous statistical analysis.

Introduction

Molecular profiling is widely regarded to be integral for advancing life science research and clinical diagnosis in the 21st century. It is increasingly recognized that subsets of genes (hundreds rather than thousands) provide the most reliable gene profile definitions of any specific biological process.

We have developed a novel solution – The StellARray[™] Gene Expression System – to meet the need of biomedical scientists for reliable profiling of biologically focused gene sets. It is based on quantitative polymerase chain reaction

Figures 1a & b. Real-time PCR data showing amplification curves of quadruplicate wells from a StellARray™ qPCR Array under standardized reaction conditions. 1a. Example of highly reproducible amplification curve data. 1b. A single peak indicating a single PCR product.

(qPCR), the gold standard for accurate measurements of gene expression, having an inherently wider dynamic range when compared to microarrays.

The StellARray[™] Gene Expression System

The StellARray[™] Gene Expression System is comprised of three parts:

- 1) StellARray[™] qPCR Array
- 2) Global Pattern Recognition™ (GPR) Data Analysis Tool
 3) GeneSieve™ Query

Each StellARray[™] qPCR Array is compiled to provide the highest information content with a scientifically relevant context. Each qPCR array is either a 96- or 384-well formatted, 'wet lab' validated group of gene primer sets, focused on specific biological processes. A single gene quality control example illustrating the accuracy and reproducibility of amplification using the StellARray[™] qPCR Array is shown in (Figures 1a & b). StellARray[™] qPCR Arrays are used with standard qPCR instruments and SYBR[®] Green-based Reagents. They provide a streamlined pathway to successful molecular profiling experiments.

The Global Pattern Recognition[™] (GPR) Analysis Tool has solved one of the most fundamental problems facing experimentation using qPCR.

"How do I analyze the data and determine REAL changes in gene expression?"

The answer to this question is found in the GPR algorithm, which makes gene expression analysis simple, fast and reliable.

The StellARray[™] Gene Expression System also includes the GeneSieve[™] Query, bringing a new level of search capability to researchers by merging databases containing genecentric biological information in a new and innovative way. GeneSieve[™] Query can filter or "sieve" thousands of genes for a custom population of real-time PCR arrays that have a unifying biological theme, such as a particular disease or pathway of interest.

Why is there a need for the Global Pattern Recognition™ (GPR) Algorithm?

The traditional approach to measure gene expression changes from qPCR data has been to normalize the results of a gene of interest with respect to a housekeeping gene (a.k.a. a reference or normalizer gene). The general assumption is that the level of expression of the normalizer gene does not change in the context of the experiment and can be used to normalize the variability in RNA quantity between individual samples. By normalizing to a housekeeping gene, in theory, a magnitude of change can be calculated between groups of samples for a gene of interest. However, this mode of analysis is greatly complicated by the fact that housekeeping genes commonly used as normalizers (e.g., GAPDH, ß-actin, and HPRT) can themselves change in apparent expression when comparing tissues or cells in different states (Bustin 2000; Schmittgen et al. 2000; Goidin et al. 2001; Hamalainen et al. 2001).

18S rRNA is another normalizer that intuitively and experimentally seems more stable, but even 18S can vary in comparison to other genes when analyzed by sensitive qPCR techniques (Bustin 2000, Akilesh et al., 2003). Additionally, the use of 18S rRNA preempts the use of oligo-dT as a firststrand cDNA synthesis primer as 18S rRNA is not poly-adenylated and will yield varying amounts when using purified mRNA via oligo-dT based mRNA purification systems. Any small variation in the normalizer amplification would therefore compromise the analysis of the complete qPCR data set.

(Figure 2) illustrates the vagaries of reliance on single gene normalization. In this example, the p-value distribution for 384 genes is compared by normalizing to either 18S or GAPDH. It can be clearly seen that there is statistical discordance with respect to many of the genes determined to be statistically significant changes by either method alone. This illustrates the disparity that can result from single gene normalization.

Global Pattern Recognition™ (GPR) Algorithm, modified for the StellARray™ Gene Expression System

To combat the above mentioned problems, access to a modified, proprietary GPR algorithm is provided as part of the StellARray[™] Gene Expression System, which is optimally suited to generate a ranked list of significantly changed genes within a qPCR dataset. This unique algorithm and accompanying software overcomes the problem of identifying invariant normalizers by globally positioning changes in gene expression with respect to all genes within an experiment.

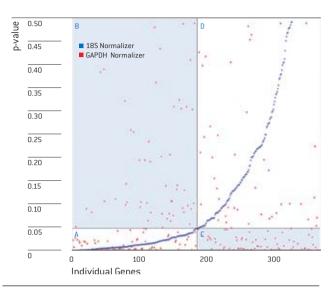


Figure 2. Comparison of the p-value distributions of genes normalized to either 18S or GAPDH illustrates the disparity of results produced by single gene normalization. This example shows values from the Human Lymphoma and Leukemia 384 StellARray™ qPCR Array (Cat. No. 00188333) for cDNA derived from Human Lymphoma compared to Normal Adjacent Tissue RNA (Applied Biosystems, Inc., Part No. AM7268). Genes on the X-axis are sorted according to p-values in ascending order (left to right) relative to the 18S normalization. Data points for each unique gene, normalized to either 18S or GAPDH, are located in the same vertical plane. Overall, quadrants containing data points for both 18S and GAPDH (blue and red) represent genes in statistical agreement between both normalization routines. Specifically, guadrant A (lower left) shows those genes that are significantly different between the two groups when normalized relative to either 18S or GAPDH. Quadrant B (upper left) shows those genes determined to be significantly different when normalized to 18S, but not by GAPDH. Quadrant C (lower right) shows those genes determined to be significantly different when normalized to GAPDH, but not by 18S. Quadrant D (upper right) shows those genes that are not significantly different when normalized to either GAPDH or 18S.

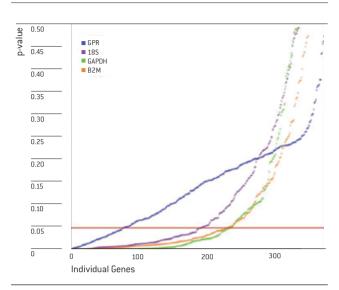


Figure 3. P-value distribution of single gene normalized values for three commonly used 'Normalizers' compared to GPR. Each data point represents a single p-value with respect to a single gene. Genes for each method have been independently sorted by p-value. The data was derived from the Human Lymphoma and Leukemia 384 StellARray" qPCR Array (Cat. No. 0018833) by determining the expression level changes in cDNA derived from Human Lymphoma compared to Normal Adjacent Tissue RNA (Applied Biosystems, Inc., Part No. AM7268). For illustrative purposes, data above a p-value of 0.5 has been excluded from the graph. The GPR global normalization process produces a linear p-value distribution with a lower false positive rate resulting in more accurate data and solid gene leads.

Gene Name	p-value	Fold Change
Gene A	0.0001	29.4376
Gene B	0.0003	19.8958
Gene C	0.0007	6.2012
	Gene A Gene B	Gene A 0.0001 Gene B 0.0003

Figure 4. An example of GPR data formatting for data analysis purposes. The magnitude of fold change is calculated after statistical ranking by p-value has been performed.

GPR provides a true statistical analysis of results based on internal consistency of the data, which makes GPR optimally suited to detect small, but reproducible, changes in gene expression. GPR also eliminates data skewing that results from the variability associated with single gene normalizers. Compared to conventional analysis methods, the data skew correction provided by the GPR global normalization process produces a linear p-value distribution with a lower false positive rate resulting in more accurate data (Figure 3).

Only after the genes are statistically evaluated for replicate consistency is the magnitude of the change calculated. An example of the GPR output is illustrated in (Figure 4).

Application of the StellARray™ Gene Expression System

Materials and Methods

Since true biological replicates are not necessarily available, it is acceptable to generate samples from split cultures of cells that have been treated as individual samples. This includes RNA purifications and cDNA syntheses and are referred to as biotechnical replicates ('biotech reps', for short). In this example, the toxicology and stem cell applications, we used quadruplicate biotech replicates per group. In some cases, for example, it is acceptable to generate data sets derived from technical replicates. In this context, a technical replicate refers to data sets that are derived from single or pooled cDNA's that are then split into triplicates (at least) and analyzed as individual replicates.

For the cancer application the data sets were derived from technical triplicates.

Sample Preparation RNA purification

All RNA purifications were carried out using the RNeasy Mini Kit (RNeasy Mini Kit, Cat. No. 74104, Qiagen, Inc.) and following the manufacturer's recommendations for cultured cells. One microliter (1µl) of SUPERase-In™ ([20 U/µl] Cat. No AM2694, Applied Biosystems, Inc.) was added to the bottom of the RNA elution receiver tube (just prior to elution) to improve RNA stability. The RNA quantity was determined using the RiboGreen® Assay Kit (Quant-iT™ RiboGreen® RNA Assay Kit, Cat. No. R11490, Invitrogen, Inc.). The RNA quality was determined using the BioAnalyzer 2100 microfluidics-based platform (2100 Bioanalyzer System, Cat. No. G2940CA, Agilent, Inc.).

cDNA Synthesis

Approximately 200ng total RNA was used as template per cDNA reaction using the qScript cDNA Synthesis Kit (qScript cDNA Synthesis Kit, Cat. No. 95047, Quanta Biosciences, Inc.) following the manufacturer's recommendations.

Cell Culture

All cells were cultured using the specific growth and differentiation guidelines for each cell type.

Toxicology – Clonetics[®] Ready Heps[™] Fresh Human Hepatocytes (Cat. No. CC-2703, Lonza) were cultured on collagen and allowed to recover from shipping for 24 hours in HCM[™] Hepatocyte Culture Medium SingleQuots[®] Kit (Cat. No. CC-4182, Lonza) at 37°C with 5% (v/v) CO₂. A 1M stock solution (in ethanol) of Acetaminophen (Cat. No. A7085, Sigma-Aldrich) was used to produce medium containing a final concentration of 10mM Acetaminophen in fresh HCM[™] Medium for the treatment plate. HCM[™] Medium was removed from the cells and 2ml of medium, treated or untreated, was added to the cells. Cells were cultured at 37°C with 5% (v/v) CO₂ incubation for 4 hours. Cells were trypsinized, scraped and processed for RNA and cDNA as described above.

Cancer – FirstChoice® Human Tumor/ Normal Adjacent Tissue RNA (Cat. No. AM7268 Human Lymphoma/Normal Adjacent Tissue RNA, Applied Biosystems, Inc.) was used as the source for RNA and cDNA was synthesized as described above.

Stem Cells – hMSC Human Mesenchymal Stem Cells (Cat. No. PT-2501, Lonza) were cultured in MSC Growth Medium in T75 flasks for 1 week for expansion (MSCGM[™] Mesenchymal Stem Cell Growth Medium BulletKit[®], Cat. No. PT-3001, Lonza) at 37°C with 5% (v/v) CO₂ incubation. For stem cell osteogenic differentiation, hMSC's were plated in 24-well plates at a density of 3100 cells/cm² in Osteogenic Basal Medium using the hMSC Mesenchymal Stem Cell Osteogenic Differentiation BulletKit[®] (Cat. No, PT-3002, Lonza). Differentiation was initiated 2 days after initial plating using the supplied SingleQuots[®] Factors. Medium was changed every 2-3 days. Select wells were stained for positive mineralization with OsteoImage[™] Mineralization Assay (Cat. No. PA-1503, Lonza) at day 21. Cells were harvested on day 22 of differentiation and processed for RNA and cDNA as described above.

Real-time PCR

Quantitative PCR data was collected using the three application-specific 384-well StellARray™ qPCR Arrays: Toxicology Application - Human General Toxicology 384 StellARray™ qPCR Array (Lonza Cat. No. 00188331) Cancer Application - Human Lymphoma & Leukemia 384 StellARray™ qPCR Array (Lonza Cat. No. 00188333) Stem Cell Differentiation Application - Human Stem Cell 384 StellARray™ qPCR Array (Lonza Cat. No. 00188335)

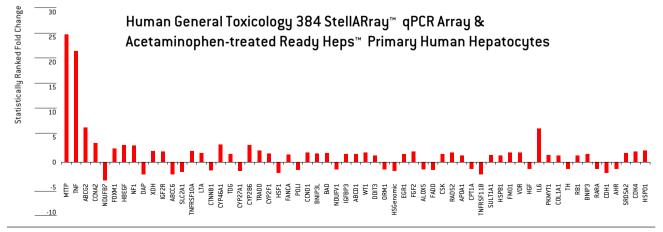
Each StellARray™ qPCR Array well was loaded with 10 microliters of sample-specific, SYBR® Green Master Mix containing a chemically modified hot-start *Taq* Polymerase. The array was heat sealed, and run on a 7900HT Sequence Detection System (Applied Biosystems, Inc.) using default cycling parameters for 40 cycles (1 cycle of 50°C for 2 minutes, 1 cycle of 95°C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 60°C for 1 minute). Fluorescence data was acquired during the 60°C anneal/extension plateau. Post-run data collection involved the setting of a common threshold (Ct) across all arrays within an experiment, exportation and collation of the Ct values, and analysis via GPR.

GPR algorithm

Data input for GPR consists of a list of Ct values, derived directly from real-time PCR instruments, for each sample (control or experimental). After designating the control and experimental sets of Ct values, GPR filters expression data to separate genes into two groups – genes considered for analysis (G) and genes that can be used as potential normalizers (N). Genes that are not expressed in either sample are not considered further. After filtering the data into two sets, GPR performs a proprietary global normalization and statistical analysis by comparing each G to each N. The magnitude of change in expression ("fold change") for each gene is subsequently determined using the ten best N genes, as defined within each experiment.

Fold Change 200003 25.6104 000005 22.2026 00003 6.9525 00003 6.9525 00003 3.8869 000152 -3.6055 000036 2.7551 000152 3.3640 000451 3.3640 000866 -2.4263 000967 2.1461 00152 -1.9195 00152 1.9195 00152 3.5484 005057 3.5484 005057 3.5484 005057 3.5484 005057 3.5484 005057 3.5484 005057 3.5484 007074 2.3028 007913 1.6927 007934 1.6927 007943 1.5597 010734 1.4573 010734 1.4573 010734 1.4573 011573 1.7450 012439 1.8321	
000005 22.2026 000035 6.9525 000033 3.8869 000152 -3.6055 000386 2.7551 000410 3.4209 000451 3.6460 000451 3.6400 000450 2.4263 000967 2.1461 001976 -4.395 001978 1.9195 001978 1.9192 00557 3.5484 00557 3.5484 00557 1.6677 00557 1.6677 00557 1.6220 005712 -1.6677 0067913 1.6927 007074 2.3028 007973 1.5597 010734 1.4573 010734 1.4573 010734 1.4573	e
000035 6.9525 000033 3.8869 000152 -3.6055 000386 2.7551 000410 3.4209 000451 3.3640 000866 -2.4263 000967 2.1461 001346 -2.4395 001552 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00152 -1.9195 00557 3.5484 005679 1.6220 005712 -1.6627 005790 -2.1288 007913 1.6927 007989 -2.1288 009453 1.5597 010434 -1.4573 010734	
000093 3.8869 000152 -3.6055 000386 2.7551 000410 3.4209 000451 3.3640 000866 -2.4263 000986 2.2707 000987 2.1461 001346 -2.4395 001552 1.9195 001541 3.5444 001552 1.9195 001542 -1.5992 005572 3.5484 005573 3.5484 005574 -1.6677 005575 3.4141 0079743 1.6927 0079783 -1.5597 007983 1.5597 010743 -1.4573 010734 1.9355 011573 1.7450	
000152 -3.6055 000366 2.7551 000410 3.4209 000451 3.3640 000866 -2.4263 00097 2.1461 001346 -2.4395 001522 -1.9195 001748 2.1847 001748 2.1847 001748 1.5992 005527 3.5484 005679 1.6220 005712 1.6677 005679 3.4141 007903 2.1288 007913 1.6927 007980 -2.1288 007943 1.5597 010434 -1.4573 010734 1.9355 011573 1.7450	
000386 2.7551 000410 3.4209 000451 3.3640 000866 -2.4263 00097 2.1461 001346 -2.4395 001552 1.9195 001552 1.9195 001552 1.9195 0014718 2.1947 001998 1.8904 005679 3.5484 005679 1.6220 00572 3.5484 005679 1.6627 006508 3.4141 007074 2.3028 007913 1.6927 007928 -2.1288 009453 1.5597 01434 -1.4573 010734 1.9355 011573 1.7450	
000410 3.4209 000410 3.4209 000451 3.3640 000866 -2.4263 000967 2.1461 001346 -2.4395 001552 -1.9195 001718 2.1947 001988 1.8904 004284 -1.5992 00557 3.5484 005679 1.6627 006508 3.4141 0067074 2.3028 007074 2.3028 007074 1.5927 014345 1.4523 001434 -1.4573 010734 1.9355 011573 1.7450	
000451 3.3640 000866 -2.4263 000967 2.1461 001346 -2.4395 001552 -1.9195 001718 2.1947 001988 1.8904 002527 3.5484 005579 1.6220 005712 -1.6677 006508 3.4141 007074 2.3028 007073 1.5597 001434 -1.4573 001734 1.9355 011573 1.7450	
000866 -2.4263 000896 2.2707 000967 2.1461 001346 -2.4395 001552 -1.9195 001978 1.8904 001988 1.8904 004284 -1.5992 005577 3.5484 005678 3.4141 007074 2.3028 007073 1.6927 007939 -2.1288 009453 1.5597 010434 -1.4573 010734 1.9355 011573 1.7450	
000886 2.2207 4 000967 2.1461 4 001346 -2.4395 4 001552 1.9195 4 001718 2.1947 4 001998 1.8904 4 004284 1.5992 4 005057 3.5484 4 00579 1.6220 4 0007074 2.3028 9 0007074 2.3028 9 007939 1.6527 9 007974 1.5957 9 0079789 2.1288 9 009453 1.5597 9 010434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
000967 2.1461 4 001346 -2.4395 4 001552 -1.9195 4 001978 2.1947 4 001998 1.8904 4 001998 1.8904 4 004284 -1.5992 4 005057 3.5484 4 005679 1.6220 4 0007074 2.3028 9 0007031 1.6927 9 0079739 -2.1288 9 007943 1.5597 9 010434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
001346 -2.4395 4 001552 -1.9195 4 001718 2.1947 4 001998 1.8904 4 004284 -1.5992 4 005057 3.5484 4 005679 1.6220 4 007074 2.3028 5 007913 1.6927 5 007974 2.3028 5 007978 -2.1288 5 0019453 1.5597 5 010434 -1.4573 5 010734 1.9355 5 011573 1.7450 5	
001552 -1.9195 4 001718 2.1947 4 001998 1.8904 4 004284 -1.5992 4 00557 3.5484 4 005679 1.6220 4 005679 1.6220 4 007074 2.3028 5 007913 1.6927 5 007974 2.1288 5 007989 -2.1288 5 001943 1.5597 5 010734 1.9355 5 011573 1.7450 5	
001718 2.1947 001718 2.1947 001718 1.8904 004284 -1.5992 005057 3.5484 005679 1.6220 005712 -1.6677 0007074 2.3028 0007993 -6.232 0007903 1.6927 0007903 1.5997 0007989 -2.1288 0007943 1.5597 010434 -1.4573 010734 1.9355 011573 1.7450	
001998 1.8904 4 001998 1.8904 4 001998 1.8904 4 005057 3.5484 4 005679 1.6220 4 005679 1.6220 4 005679 1.6220 4 005679 1.6677 5 006508 3.4141 5 007074 2.3028 5 0079799 -2.1288 5 009453 1.5597 5 010434 -1.4573 5 010734 1.9355 5 011573 1.7450 5	
004284 -1.5992 4 005057 3.5484 4 005679 1.6220 4 005679 1.6220 4 005679 1.6220 4 005679 1.6220 4 005679 1.6220 4 005679 1.6220 4 007074 2.3028 5 007074 2.3028 5 0079799 -2.1288 5 0019453 1.5597 5 010434 -1.4573 5 010734 1.9355 5 011573 1.7450 5	4
0015057 3.5484 4 005057 3.5484 4 005679 1.6220 4 005678 3.4141 9 006508 3.4141 9 007074 2.3028 9 007913 1.6927 9 007989 -2.1288 9 001434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
0005679 1.6220 4 005572 1.6627 5 006508 3.4141 5 007074 2.3028 5 007913 1.6927 5 007939 -2.1288 5 0019453 1.5597 5 010734 1.9355 5 011573 1.7450 5	
0005712 1.6677 9 0005712 1.6677 9 0005707 2.3028 9 007074 2.3028 9 007913 1.6927 9 007989 -2.1288 9 009453 1.5597 9 010434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
000510 3.4141 007074 2.3028 007913 1.6927 007989 -2.1288 009453 1.5597 010434 -1.4573 010734 1.9355 011573 1.7450	
007074 2.3028 9 007073 1.6927 9 007989 -2.1288 9 009453 1.5597 9 010434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
007913 1.6927 007989 -2.1288 009453 1.5597 010434 -1.4573 010734 1.9355 010734 1.7450	
007989 -2.1288 9 009453 1.5597 9 010434 -1.4573 9 010734 1.9355 9 011573 1.7450 9	
009453 1.5597 5 010434 -1.4573 5 010734 1.9355 5 011573 1.7450 5	
010434 -1.4573 5 010734 1.9355 5 011573 1.7450 5	
010734 1.9355 9 011573 1.7450 9	
011573 1.7450	
011010 111100	
012439 1.8321	
013065 -1.4036	
013439 1.6556	
015049 1.5840	

Table 1. Toxicology – GPR results derived from Acetaminophen treated Clonetics® Ready Heps™ Primary Human Hepatocytes. Results shown represent genes whose expression levels are statistically different between the treated and untreated groups and fold change values are displayed with respect to the treated group.


Results

Toxicology

In concert with Clonetics[®] Ready Heps[™] Fresh Primary Human Hepatocytes, we evaluated the GPR-specific expression profile of the effect of exposure to Acetaminophen (APAP). This classic gene expression profiling example involves the demonstration of Acetaminophen-derived hepatotoxic effects.

GPR analysis yielded 61 significantly changing genes ('hitters') from 383 potential targets (see Table 1, Figure 5) using the Human General Toxicology 384 StellARray™ qPCR Array (Lonza Cat. No. 00188331). Ingenuity® Pathway Analysis (Ingenuity® Systems) (Figure 5a) identified the following top 5 canonical pathways associated with the GPR hitters:

- 1. NRF2-mediated Oxidative Stress Response
- 2. IL10 Signaling
- 3. Hepatic Fibrosis / Hepatic Stellate Cell (HSC) Activation
- 4. Aryl Hydrocarbon Receptor Signaling
- 5. PXR/RXR Activation

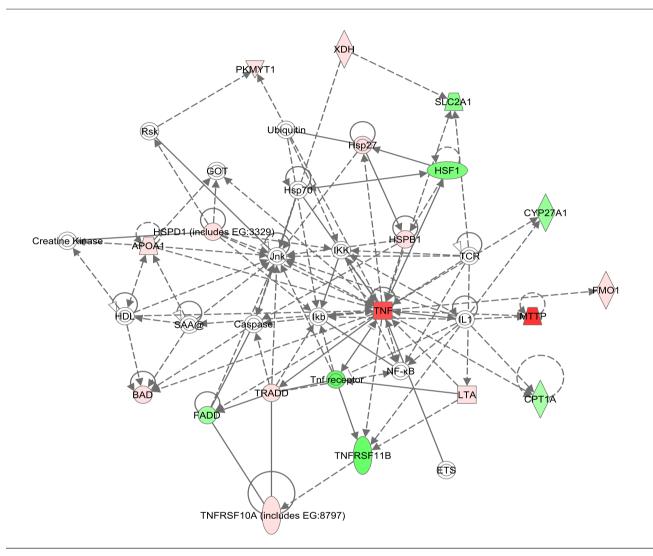


Figure 5a. Ingenuity® Pathway Analysis generated pathway associated with expression levels of MTTP and TNF, the two highest statistically ranked genes, and other associated genes.

Rank	Gene Name	p-value	Fold Change	Rank	Gene Name	p-value	Fold Change
1	CD83	0.0016	59.8957	39	CDKN1C	0.0243	-10.9654
2	IGHA1	0.0039	-88.5932	40	LCK	0.0245	8.5314
3	BLK	0.0041	57.9644	41	CXCL9	0.0247	7.0802
4	CD79A	0.0048	30.0239	42	CXCR4	0.0258	6.3874
5	LRMP	0.0049	34.5381	43	MAF	0.0263	-9.3062
6	IL21R	0.0053	20.2479	44	IRF8	0.0275	4.7797
7	IGHD	0.0054	65.0405	45	CHEK1	0.0276	6.7642
8	CD80	0.0061	15.2789	46	RUNX3	0.0283	5.7920
9	CD79B	0.0064	41.1093	47	IGF1R	0.0289	-9.0576
10	FOSB	0.0069	-28.0115	48	IKZF3	0.0289	6.2917
11	FOS	0.0070	-37.4616	49	CCNB2	0.0291	5.6233
12	BCL11A	0.0074	16.0076	50	ID2	0.0302	-7.8832
13	REL	0.0083	22.4958	51	H2AFX	0.0304	5.2044
14	LM02	0.0083	15.0837	52	HOXA1	0.0321	4.1611
15	CD40	0.0099	16.0065	53	MKI67	0.0321	4.7219
16	POU2AF1	0.0109	11.0425	54	LM01	0.0330	-25.5439
17	PTPRC	0.0113	11.5661	55	BLM	0.0349	4.7992
18	TNFRSF13C	0.0119	9.7202	56	IRF6	0.0349	-7.7860
19	EZH2	0.0121	9.6434	57	CCND2	0.0355	-9.2957
20	DTX1	0.0121	10.2096	58	SHH	0.0356	-16.5320
21	CD19	0.0125	19.4257	59	PTGS1	0.0361	-5.8911
22	LEF1	0.0141	8.3117	60	SOCS2	0.0381	-5.9421
23	RAD51	0.0147	12.8059	61	IRF4	0.0387	4.5656
24	IKZF1	0.0148	11.0648	62	DKK3	0.0387	-5.2665
25	IL8	0.0150	8.3743	63	CDKN1A	0.0395	-6.4348
26	CD86	0.0153	9.2918	64	IgL	0.0399	-5.7854
27	IL2RA	0.0161	13.9822	65	CCND1	0.0408	-5.3136
28	TRAF4	0.0166	9.9143	66	BRCA1	0.0423	4.4661
29	PAX5	0.0175	13.3893	67	MAFK	0.0427	-9.9578
30	LTB	0.0184	6.9180	68	BIRC3	0.0429	3.6171
31	BCL6	0.0192	6.6047	69	CNTN1	0.0432	-10.6860
32	BLR1	0.0197	24.9634	70	AKT1	0.0441	-6.2361
33	CDC20	0.0203	9.6912	71	WRN	0.0451	3.6743
34	POU2F2	0.0211	7.9444	72	NOTCH3	0.0453	-5.7461
35	SYK	0.0217	5.3916	73	DNMT1	0.0453	4.0170
36	KIT	0.0224	-8.6915	74	PDGFRB	0.0486	-5.9342
37	IGF2	0.0238	-9.4461	75	IL1B	0.0496	4.0665
38	FANCA	0.0243	6.1093				

Table 2. Cancer – GPR results derived from FirstChoice® Human Tumor and Normal Adjacent Tissue RNA. The tumor RNA sample is derived from a large B cell type lymphoma, which arose in the small intestine of a 61-year old female.

Human Lymphoma & Leukemia 384 StellARray[™] qPCR Array & FirstChoice[®] Human Tumor RNA sample is derived from a large B cell type lymphoma

Cancer

A lymphoma is a type of solid neoplasm that originates from lymphocytes. The FirstChoice® Human Tumor RNA sample is derived from a large B-cell type lymphoma, which arose in the small intestine of a 61 year old female. We analyzed a tumor and matched normal sample from a single individual. As expected from the tumor type, there is a significant enrichment for genes associated with a B-cell lineage in the GPR results.

GPR analysis yielded 75 significantly changing genes ('hitters') from 383 potential targets (see Table 2, Figure 6) using the Human Lymphoma & Leukemia 384 StellARray™ qPCR Array (Lonza Cat. No. 00188333). Ingenuity® Pathway Analysis (Ingenuity® Systems) (Figure 6a) identified the following top 6 canonical pathways associated with the GPR hitters:

- 1. B Cell Receptor Signaling
- 2. IL2 Signaling p53 Signaling Cell
- 3. Cycle: G2/M
- 4. DNA Damage Checkpoint Regulation
- 5. Aryl Hydrocarbon Receptor Signaling
- 6. Glucocorticoid Receptor Signaling

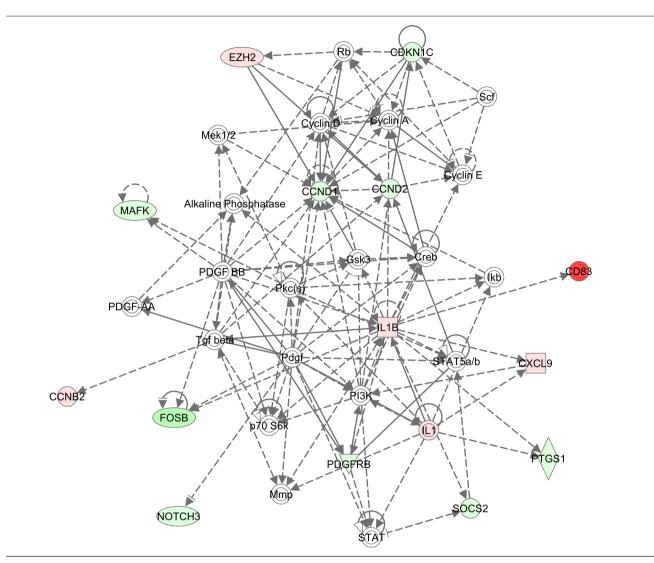


Figure 6a. Ingenuity® Pathway Analysis generated pathway associated with expression levels of CD83, the highest statistically ranked gene, and other associated genes.

Stem Cell Differentiation

Cell differentiation is a transition of a cell from one cell type to another and involves a switch from one pattern of gene expression to another. Mesenchymal stem cells, derived from the bone marrow, can give rise to stromal cells, fat cells, and types of bone cells. In this application, differentiation conditions were selected to drive the hMSC cells to an osteogenic phenotype.

GPR analysis yielded 87 significantly changing genes ('hitters') from 383 potential targets (see Table 3, Figure 7) using the Human Stem Cell 384 StellARray[™] qPCR Array (Lonza Cat. No. 00188335). Ingenuity[®] Pathway Analysis (Ingenuity[®] Systems) (Figure 7a) identified the following top 8 canonical pathways associated with the GPR hitters:

- 1. Hepatic Fibrosis / Hepatic Stellate Cell Activation
- 2. Wnt/ß-catenin Signaling
- 3. IL6 Signaling
- 4. Aryl Hydrocarbon Receptor Signaling
- 5. Acute Phase Response Signaling
- 6. Ephrin Receptor Signaling
- 7. Cell Cycle: G1/S Checkpoint Regulation
- 8. JAK/STAT Signaling

Rank	Gene Name	p-value	Fold Change	Ra	ank	Gene Name	p-value	Fold Change	Rank	Gene Name	p-value	Fold Change
1	ANPEP	0.0001	171.8273		30	GLI1	0.0102	4.5207	59	CTNNB1	0.0317	2.9508
2	ELOVL6	0.0004	28.3697		31	CSF1	0.0106	4.2384	60	PARP4	0.0359	2.7453
3	IGF1	0.0005	-39.6098		32	DPPA2	0.0125	4.1976	61	DAB2	0.0365	2.7914
4	SHH	0.0006	21.3665		33	HIF1A	0.0128	3.3618	62	HOXA10	0.0368	-8.2912
5	PTCH1	0.0006	-28.8467		34	ITGA1	0.0129	3.8579	63	TRIM14	0.0373	-2.7718
6	MCFD2	0.0007	15.9657		35	ABCB1	0.0135	-12.0501	64	NANOG	0.0373	-3.7979
7	PR0M2	0.0008	23.8314		36	GYPA	0.0159	-3.3431	65	SALL1	0.0381	2.6980
8	ALPL	0.0009	13.5332		37	COL2A1	0.0160	3.4108	66	NANOS1	0.0387	-2.5449
9	FGF13	0.0011	-23.5143		38	PHC1	0.0180	3.5785	67	TCEA3	0.0387	-3.0997
10	CD34	0.0019	-29.6974	:	39	RNF2	0.0184	2.9688	68	ZFX	0.0388	2.5808
11	FN1	0.0019	10.6660	4	40	NR6A1	0.0192	3.4012	69	CDKN2A	0.0389	2.6394
12	VEGFA	0.0020	-10.4183		41	GBX2	0.0197	3.4574	70	SOX6	0.0403	2.5409
13	MAT2A	0.0037	5.9807	4	42	ZFP42	0.0216	3.3794	71	SLAMF1	0.0404	2.5655
14	TNC	0.0037	7.0222	4	43	BCL2	0.0222	3.1717	72	TP53	0.0405	-3.3174
15	FZD7	0.0041	7.5943	4	44	WWTR1	0.0225	3.3775	73	SPP1	0.0417	-3.1436
16	SLC22A18	0.0043	-5.6540		45	CXCR4	0.0228	3.3432	74	EP0	0.0417	2.5623
17	GATA2	0.0045	6.9530	4	46	LIF	0.0229	-7.7641	75	SIPA1	0.0420	-3.2578
18	SC4MOL	0.0048	5.6275	4	47	BMP4	0.0250	-2.9390	76	CD4	0.0424	2.5278
19	E2F1	0.0050	-5.8964	4	48	IL6ST	0.0250	3.1186	77	MSH2	0.0437	2.5176
20	IL11	0.0057	-7.2315	4	49	PPIC	0.0256	-9.2678	78	IL9	0.0455	2.9102
21	ADIPOQ	0.0060	4.8878	!	50	SELE	0.0261	3.2129	79	RPS6KA5	0.0463	2.5442
22	EPHA2	0.0069	4.8783	!	51	KDR	0.0263	-3.2824	80	MAML3	0.0468	2.5161
23	CADM1	0.0073	-8.1671	!	52	EPAS1	0.0269	-2.9272	81	GSK3B	0.0475	2.4918
24	ITGA2B	0.0079	4.8379	!	53	HSPG2	0.0279	2.9689	82	KITLG	0.0482	2.3202
25	EMP1	0.0083	4.7432	!	54	EZH2	0.0280	-2.9007	83	CD9	0.0486	-2.9131
26	SOCS3	0.0087	-5.9710	!	55	FGFR1	0.0289	3.1448	84	CLDN7	0.0488	2.4815
27	TFAP2C	0.0096	-4.2680	!	56	CDKN1B	0.0294	2.9627	85	PROM1	0.0490	2.4050
28	HDAC1	0.0100	-6.3748	!	57	GABPA	0.0303	-3.7474	86	GCM1	0.0491	2.5171
29	PSCA	0.0100	-4.0750	!	58	SHMT1	0.0311	-3.5336	87	IL5	0.0494	-3.0107

Table 3. Stem Cell Differentiation – GPR results derived from Poietics® hMSC Human Mesenchymal Stem Cells that have been cultured under conditions to stimulate osteogenic differentiation. Results shown represent genes whose expression levels are statistically different between the differentiated and undifferentiated groups. Fold Change values are displayed with respect to the differentiated group.

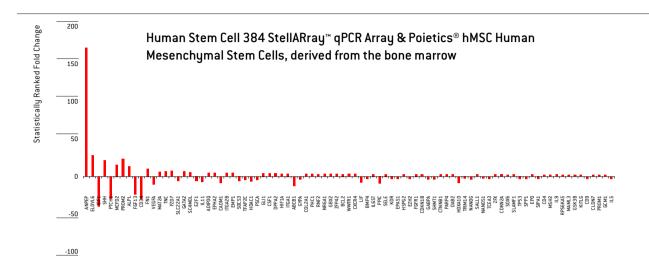


Figure 7. Graphical representation of Table 3. Cancer GPR results.

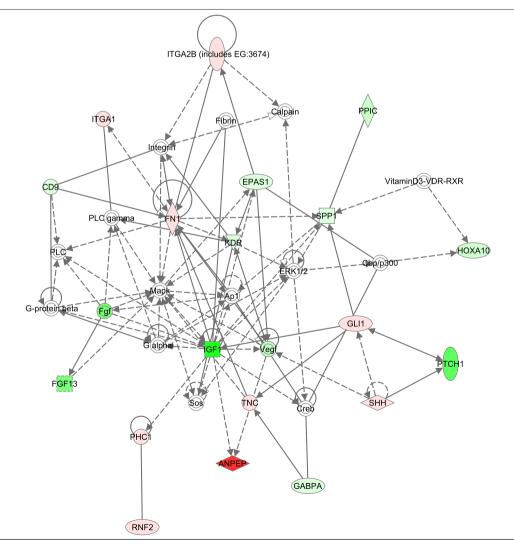


Figure 7a. Ingenuity® Pathway Analysis generated pathway associated with expression level of ANPEP, the highest statistically ranked gene, and other associated genes.

Summary

The StellARray[™] Gene Expression System revealed gene expression level changes in three diverse biological contexts. Clonetics[®] and Poietics[®] Primary Human Cells from Lonza were challenged with various experimental conditions and the StellARray[™] Gene Expression System revealed true changes in gene expression levels. The StellARray[™] Gene Expression System shows obvious merit for the purpose of accurately measuring gene expression levels within *in vitro* models of human tissues as well as tumor samples. By utilizing objective designs of gene content within a StellARray[™] qPCR Array and the novel Global Pattern Recognition[™] Analysis Tool, a statistically significant gene expression profile was easily obtained.

Using existing qPCR platforms and standard chemistries, reliable information can be derived from relatively small sets of target genes without the error associated with *a priori* chosen normalizer genes and fold-change biases.

References

Review – Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Bustin SA. (2000) *Journal of Molecular Endocrinology* **25**, 169-193.

Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Schmittgen TD, Zakrajsek BA. (2000) *J Biochem Biophys Methods*. Nov 20; **46(1-2)**, 69-81.

Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Goidin D, Mamessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O. [2001] Anal Biochem, Aug 1;295[1]:17-21.

Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Hamalainen HK, Tubman JC, Vikman S, Kyrola T, Ylikoski E, Warrington JA, Lahesmaa R. (2001) *Anal Biochem*, Dec 1;299(1):63-70.

Customized Molecular Phenotyping

by Quantitative Gene Expression and Pattern Recognition Analysis. Shreeram Akilesh, Daniel J. Shaffer, and Derry Roopenian. (2003) *Genome Research* 13:1719–1727.

Lonza Walkersville, Inc. Walkersville, MD 21793

For Research Use Only. Not for use in diagnostic procedures.

ABI is a registered trademark of Applied Biosystems Inc.; Roche and LightCycler are registered trademarks of Roche Inc.; Eppendorf is a registered trademark of Eppendorf-Netheler-Hinz GmbH; Stratagene is a trademark of Stratagene Corporation; SYBR is a registered trademark of Molecular Probes Inc.; Bio-Rad, iCycler, MyiQ, i05 Opticon and Chromo4 are trademarks of Bio-Rad Laboratories, Inc.; ROX is a trademark of Applera Corporation; Microsoft and Excel are registered trademarks of MicroSoft Corporation

Unless otherwise noted, all trademarks herein are marks of the Lonza Group or its affiliates.

The information contained herein is believed to be correct and corresponds to the latest state of scientific and technical knowledge. However, no warranty is made, either expressed or implied, regarding its accuracy or the results to be obtained from the use of such information and no warranty is expressed or implied concerning the use of these products. The buyer assumes all risks of use and/or handling. No statement is intended or should be construed as a recommendation to infringe any existing patent.

© Copyright 2009, Lonza Walkersville, Inc. All rights reserved. AP-StellARray-1 03/09

GeneSieve, StellARray, and Global Pattern Recognition are trademarks of Bar Harbor BioTechnology, Inc., and are manufactured exclusively for Lonza.