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The identification of cell-free fetal DNA (cffDNA) inmaternal circulation has made non-invasive prenatal testing
(NIPT) possible. Maternal plasma cell free DNA is a mixture of maternal and fetal DNA, of which, fetal DNA
represents a minor population in maternal plasma. Therefore, methods with high sensitivity and precision are
required to detect and differentiate fetal DNA from the large background of maternal DNA. In recent years,
technical advances in the molecular analysis of fetal DNA (e.g., digital PCR and massively parallel sequencing
(MPS)) has enabled the successful implementation of noninvasive testing into clinical practice, such as fetal
sex assessment, RhD genotyping, and fetal chromosomal aneuploidy detection. With the ability to decipher the
entire fetal genome from maternal plasma DNA, we foresee that an increased number of non-invasive prenatal
testswill be available for detectingmany single-gene disorders in the near future. This reviewbriefly summarizes
the technical aspects of the NIPT and application of NIPT in clinical practice.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Prenatal testing aims to identify fetal chromosomal and genetic
disorders prior to delivery. Prenatal testing includes both screening
ox 8118, Saint Louis, MO 63110,

ki).
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and diagnosis. Screening is typically offered to all pregnant women in
the United States and many other women depending upon the region
of the world they are from. Until now, prenatal screening has typically
utilized maternal age, biochemical, and ultrasound markers instead of
direct interrogation of the fetal genetic material, therefore, its per-
formance has been suboptimal [1]. Positive screening results prompt
further diagnostic testing, the majority of which involves invasive
procedures (e.g., chorionic villus sampling and amniocentesis) to obtain
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fetal DNA for definitive diagnosis. However, these invasive procedures
are associated with a small but real risk of miscarriage (i.e., 0.5–1%) [2].

For many decades, efforts have been made to find non-invasive
approaches to interrogate fetal genetic features. The identification of
cell-free fetal DNA (cffDNA) in maternal circulation in 1997 has created
the possibility of non-invasive prenatal testing (NIPT) using fetal DNA in
maternal plasma via a simple venipuncture [3]. In addition to maternal
plasma, extracellular fetal DNA is also documented in other bio-fluids,
such as peritoneal fluid and urine [4].

Maternal plasma DNA is a mixture of maternal and fetal DNA
(Table 1). CffDNA represents a minor population in maternal plasma,
which can be detected by real-time polymerase chain reaction (PCR)
as early as gestational day 18 [5]. Although the exact origin and release
mechanism of cffDNA inmaternal blood is uncertain, a number of studies
suggested that the placenta is the principle source of cffDNA. It is
evidenced by the presence of cffDNA in anembryonic pregnancies [6]
and the consistency between cffDNA and placenta tissue in epigenetic
markers [7] and karyotypic abnormalities [8]. In contrast, the maternal
DNA is speculated to be predominantly of hematopoietic origin according
to a sex-mismatched bone marrow transplantation model [9].

Bothmaternal and fetal DNAmolecules are short DNA fragments, and
the fetal DNA is shorter than the maternal [10,11]. Early quantitative
analysis of cffDNA using real-time PCR suggested that fractional
concentrations of cffDNA accounted for 3–6% in maternal plasma and
serum [12]. However, the recent application of more precise quanti-
fication techniques (e.g., digital PCR and massively parallel sequencing
(MPS)) has demonstrated fractional fetal DNA concentrations as high as
10% on average in early pregnancy [13]. MPS also demonstrated that the
entire fetal and maternal genomes are represented in maternal plasma
at a constant relative proportion across the whole genome [11]. The
absolute concentrations of cffDNA in maternal blood appear to increase
as gestational age progresses [12].

Yu et al. performed a high resolution study (using MPS technique)
and demonstrated that the clearance of circulating fetal DNA occurred
in 2 phases, with different kinetics [14]. The initial rapid phase had a
mean half-life of approximately 1 h, whereas the subsequent slow
phase had a mean half-life of approximately 13 h. The final
disappearance of circulating fetal DNA in normal pregnancies occurred
at about 1 to 2 days postpartum. This rapid removal of cffDNA is
essential for its use in prenatal genetic analysis because it ensures
that fetal DNA from previous pregnancies will not be present as an
interferant.

2. NIPT of paternally inherited features

The development of non-invasive prenatal testing (NIPT) technology
has allowed for the detection of paternally inherited genetic features,
derived from the father, which are not present in the maternal genome.
The rationale is a qualitative analysis identifying the presence or absence
of the paternal-specific DNA in maternal plasma.

The first application for NIPT of paternally inherited features is a fetal
sex assessment. In 1997, Lo et al. reported the use of conventional PCR to
detect Y chromosome sequences (i.e., DYS14) in maternal plasma and
Table 1
Characteristics of cell free and fetal DNA.

Features Maternal

Most likely origin Hematopoietic
Release kinetics Absolute concentrations increase as gestational

age progresses

Fractional concentration in
maternal blood

~90%

Size Short DNA fragments (b200 bp)
Larger than cell free fetal DNA molecules

Representation Entire maternal genome
serum which indicated a male fetus [3]. Since then, a number of large-
scale clinical trials have further validated this approach for fetal
sex assessment. A meta-analysis systematically reviewed 57 studies
from 1997 to 2011 involving 3524 male- and 3017 female-bearing
pregnancies [15]. The majority of these studies used real-time PCR to
analyze Y chromosome sequences, such as SRY and DYS14 in maternal
plasma. The overall sensitivity was 95.4% and specificity was 98.6% for
detection of a male fetus. This high detection accuracy has also been
observed in more recent publications [16,17]. The traditional sono-
graphic approach for fetal sex assessment can determine fetal sex
accurately after gestational week 13 [18], whereas the cffDNA-based
approach can be reliably conducted between gestational weeks 7 and
12 [15]. This is of particular value in certain clinical conditions. For
example, in congenital adrenal hyperplasia, the pregnancy of an affected
female fetus would prompt early dexamethasone administration to
prevent virilization [19]. Due to its reliable performance, this method
has been adopted into clinical practice by a number of countries for at-
risk pregnancies [20,21].

Another application of NIPT of paternal inherited features is
assessment of fetal rhesus D (RhD) status in RhD negative mothers.
RhD is a surface antigen of red blood cells, which could activate the
immune response in RhD negative individuals. Therefore, if an RhD
negative mother is carrying an RhD positive fetus, there is a risk that
the RhD antigen released from the fetus would enter the maternal
circulation and cause alloimmunization to RhD positive fetuses in future
pregnancies, leading to potentially severe hemolytic disease of the fetus
and newborn [22]. In order to eliminate the risk of alloimmunization, it is
suggested that all RhD negative mothers receive RhD immunoglobulin
prophylaxis [23]. As a result, a proportion of RhD negative mothers,
who carry RhD negative fetuses, would receive unnecessary prophylaxis
treatment. A more logical strategy is to provide RhD immunoglobulin
prophylaxis only to RhD negative mothers who carry RhD positive
fetuses. This strategy would require the interrogation of fetal RhD status,
ideally in a noninvasive manner. In 1998, Lo et al. [24] and Faas et al. [25]
first reported the use of cffDNA to genotype the fetal RHD by detecting the
presence of RHD sequences in RhD negative mothers when carrying RhD
positive fetuses. A number of large-scale clinical trials have been
conducted to further evaluate its performance, and a systematic
review of these studies from 2006 to 2008 demonstrated high
diagnostic accuracy (sensitivity = 99.5–99.8%, specificity = 94.0–
99.5%) [26]. More recent publications also have confirmed this test's
high accuracy [16,27]. Due to its reliable performance and
noninvasive nature, this test has become clinically available in a
number of countries [28].

Use of cffDNA has also been reported for paternity determination in
forensics [29,30]. In this application, a panel of short tandem repeats, or
SNPs, is analyzed in the maternal plasma DNA for comparison to the
maternal and putative paternal genotypes. Concordancewould indicate
that the putative father is the biological father. Apart from qualitative
analysis, paternally inherited sequences (i.e., paternal-specific alleles)
could also be used quantitatively in a series of applications, such as
fractional fetal DNA concentration estimation [31] and determination
of twin zygosity [32].
Fetal References

Placenta [44,9]
1) Detectable as early as day 18
2) Absolute concentrations increase as gestational age progresses
3) Rapidly cleared following delivery (two phase kinetics)

[5]
[12]
[14]

~10% in early pregnancy [13]

Short DNA fragments (b200 bp)
Smaller than maternally derived DNA molecules

[11,10]

Entire fetal genome [11]
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3. NIPT of chromosomal aneuploidies

3.1. Challenges

An aneuploid fetus bears an abnormal number of chromosomes. NIPT
of fetal aneuploidies in maternal plasma is technically more challenging
than NIPT of paternally inherited features. Stringent quantitative analysis
is required in order to identify the fetal chromosomal aberration due to
the minor population of fetal DNA in maternal circulation. For example,
if a pregnant woman carries a trisomy 21 (T21) fetus, the extra copy
of chromosome 21 from the fetus would contribute additional 5% of
chromosome 21 DNA sequences in a maternal plasma sample with
fractional fetal DNA concentration of 10%.

Early studies were focused on the elimination of interference from
the background maternal DNA by using fetal-specific markers, such
as epigenetic markers (i.e., fetal-specific hyper- or hypo-methylated
DNA) [33–37] and RNA markers (e.g., PLAC4 gene) [38]. However,
these approaches are subject to a number of limitations. For example,
the RNA-based allelic ratio approach is only applicable for fetuses
that are heterozygous for the target SNPs [38]. Other limitations include
lack of reproducibility, requirement for multiple markers, complex
experimental and data analysis procedures, small numbers of partici-
pants, and/or less optimal diagnostic performance (relatively low sensiti-
vity and specificity).

3.2. Single molecule counting

More recent studies have aimed to differentiate the subtle
chromosomal dosage changewithmore precise singlemolecule counting
techniques, such as digital PCR and MPS. In digital PCR, the maternal
plasma DNA templates are diluted to a single molecule. The target
loci are amplified and quantified to allow precise measurement of
DNA molecules derived from candidate chromosomes [39,40]. The
detection performance relies on the fractional fetal DNA con-
centration and the number of molecules used for analysis. For example,
it is estimated that 7680 DNA molecules are needed to achieve a 97%
detection accuracy for NIPT of T21 with a 25% fractional fetal DNA
concentration [40].

MPS is a second generation sequencing technology, which allows
single molecule counting in a high throughput manner. In 2008, two
pilot studies demonstrated the feasibility of MPS as a powerful tool for
NIPT of T21 [41,42]. In both studies, each analysis of MPS generated
millions of sequence reads from maternal plasma DNA [41]. The
sequence reads were then mapped to the human genome to identify
their chromosomal origin. After that, the number of sequence reads of
each chromosomewas counted to calculate its genomic representation.
The over-representation of chromosome 21 would indicate the presence
of a T21 fetus. With a relatively small sample size, both these proof-of-
concept studies demonstrated 100% sensitivity and specificity for T21
detection [41,42].

In order to increase the throughput and reduce the cost of MPS,
strategies such as multiplex sequencing [13] and targeted sequencing
[43] have also been employed. The goal of multiplex sequencing is to
simultaneously sequence multiple patient samples in a single run. The
goal of targeted MPS is to enrich the regions from the chromosome(s)
under evaluation (e.g., chromosome21, 18, and/or 13) before sequencing.
Validation studies of different MPS strategies suggested that the
performance of MPS in NIPT of aneuploidies depends largely on the
total number of sequence reads (i.e., ≥2.3 million) and fractional con-
centration of fetal DNA (i.e., ≥4%) [44].

3.3. Clinical validation of MPS-based NIPT of aneuploidies

Several large-scale follow-up clinical studies using non-targeted or
targeted MPS have further validated the clinical performance of MPS-
based NIPT of T21, trisomy 18(T18), trisomy 13 (T13) and other
chromosome aneuploidies. Studies with total participant numbers
greater than 100 are listed in Table 2. T21 is the most common and
clinically relevant type of chromosomal aneuploidy, followed by T18
and T13. Therefore the discussion in this section will focus on NIPT of
these three trisomies.

The overall clinical performance of MPS-based NIPT for detection of
T21 is more robust than that of T18 and T13. The relatively poor
detection of chromosome 18 and 13 aneuploidies was speculated to
be due to their relatively lower average GC content than chromosome
21 [41,45]. For T21, the sensitivity has been published to be 100%, except
for one study that reported 98.6% [46]. The specificity has been reported
to be 97.9% to 100%.When combining all the studies listed in Table 2, the
overall sensitivity and specificity for detection of T21 are 99.64% and
99.96%, respectively, with only three false negative cases and nine
false positive cases (Table 3). Notably, all three false negative cases
were reported in one of the earlier studies in 2011.Most of these studies
were prospectivemulti-center studies and focused on pregnantwomen
at a high risk for fetal aneuplodies. The overall prevalence of these
studies for T21, T18, and T13 is 1:25, 1:67, and 1:74, which is much
higher than that in the screening population (1:500 for T21; 1:4000
for T18, and 1:7000 for T13) [6]. It is important to note that disease
prevalence influences predictive values. For example, the positive
predictive values (PPV) and negative predictive values (NPV) for T21
are calculated based on the average sensitivity of 99.64% and specificity
of 99.96% derived from large scale studies listed in Table 2. At this near
perfect sensitivity and specificity, the PPV is only 83.31% in the routinely
screened population (prevalence 1:500) compared to 99.44% in thehigh
risk population (prevalence 1:15).

A few recent studies have been performed using a routine screening
population [47–49] or combinationof high risk and screeningpopulations
[50]. Nicolaides et al. [48] demonstrated 100% sensitivity and 100%
specificity of MPS-based NIPT performed on a screening population
of 1949 cases at 11–13 weeks of gestational age. The prevalence of
T21 in this study (1:244) is more representative of that in a
routinely screened population (1:500). This study demonstrated
that the performance of screening for T21 and T18 by MPS-based
NIPT in a routine population is as robust as previously reported
high-risk groups, paving theway, perhaps, for NIPT to replace traditional
maternal serum screening.

3.4. Implementation into clinical practice

MPS-based NIPT for T21 has recently been launched by more than
four commercial companies and several clinical laboratories in the
United States, China, and Europe. At least four studies have been
published to report the initial clinical laboratory experience in NIPT
for fetal aneuploidy using maternal plasma [47,49–51].

Conventionally, the prenatal testing for fetal aneuploides is
performed as a combination of screening and confirmation testing.
Results from noninvasive screening that indicate increased risk are
followed by invasive diagnostic procedures (e.g., chorionic villus
sampling and amniocentesis) to obtain fetal DNA for definitive
diagnosis. NIPT can be integrated into prenatal screening and diagnosis
practice through three potential clinical approaches: 1) Replace the
current maternal serum screening protocol with NIPT; 2) Add NIPT as
an intermediate step after the screening and before the invasive
diagnostic testing; or 3) Replace the invasive diagnostic testing. Which
of these options is adopted will depend on multiple factors, such as
clinical performance (sensitivity, specificity, PPV and NPV) and practical
considerations (test availability, cost-effectiveness and turnaround time).

Professional societies, such as the American College of Obstetricians
and Gynecologists (ACOG), the Society for Maternal Fetal Medicine
(SMFM), the International Society for Prenatal Diagnosis (ISPD), the
National Society of Genetic Counselors (NSGC), and the Society of
Obstetricians and Gynecologists of Canada (SOGC) have recently
published their statements/opinions on how to implement the MPS-



Table 2
Large-scale studies of NIPT of trisomies 21, 18, and 13.

Authors Study design Study populationa Technique Case numbers GA b (weeks) Sensitivity
(%)

Specificity
(%)

Reference

Aneuploidy Total

Chen et al. Prospective and
retrospective study
Multi-center

High risk MPS T18: 37
T13: 25

289 13 91.9 (34/37)
100 (25/25)

98 (247/252)
98.9 (261/264)

[45]

Chui et al. Prospective and
retrospective study
Multi-center

High risk MPS T21: 86 232 13 100 (86/86) 97.9 (143/146) [13]

Enrich et al. Prospective study
Multi-center

High risk MPS T21: 39 449 16 100 (39/39) 99.7 (409/410) [68]

Palomaki
et al.

Prospective nested
case–control study
Multi-center

High risk MPS T21: 212 1683 15 98.6 (209/212) 99.8 (1468/1471) [46]

Bianchi et al. Prospective observational
nested case–control study
Multi-center

High risk MPS T21: 89
T18: 36
T13: 14

532 15 100 (89/89)
97.2 (35/36)
78.6 (11/14)

100 (443/443)
100 (496/496)
100 (518/518)

[69]

Ashoor et al. Retrospective nested
case–control study

High risk Targeted MPS T21: 50
T18: 50

397 11–13 100 (50/50)
98 (49/50)

100 (347/347)
100 (347/347)

[70]

Dan et al. Prospective study
Multicenter clinical
experiences

High risk and
screening

MPS T21: 142
T18: 46

11,105 20 100(142/142)
100 (46/46)

99.99 (10,962/10,963)
99.99(11,058/11,059)

[50]

Jiang et al. Prospective study
Multicenter

NA MPS T21: 16
T18: 12
T13: 2

903 10–34 100 (16/16)
100 (12/12)
100 (2/2)

100 (887/887)
99.9 (890/891)
100 (901/901)

[71]

Lau et al. Prospective study High risk MPS T21: 11
T18:10
T13: 2

108 12 100 (11/11)
100 (10/10)
100 (2/2)

100 (97/97)
100 (98/98)
100 (106/106)

[72]

Nicolaides
et al.

Prospective cohort study Screening MPS T21: 8
T18: 2

1949 11–13 100 (8/8)
100 (2/2)

100 (1941/1941)
99.9 (1945/1947)

[48]

Norton et al. Prospective cohort study
Multi-center

High risk MPS T21: 81
T18: 38

3006 17 100 (81/81)
97.4 (37/38)

99.97 (2924/2925)
99.93 (2966/2968)

[73]

Palomakiet al. Prospective nested
case–control study

High risk MPS T18: 59
T13: 12

1971 15 100 (59/59)
91.7 (11/12)

99.7(1907/1912)
99.2(1943/1959)

[74]

Sparks et al. Prospective study High risk Targeted MPS T21: 36
T18: 8

167 18 100 (36/36)
100 (8/8)

100 (131/131)
100 (159/159)

[75]

Liang et al. Prospective
Multi-center

High risk MPS T21: 40
T18: 14
T13:4

412 15–39 100 (40/40)
100 (14/14)
100 (4/4)

100 (372/372)
100 (398/398)
99.75 (407/408)

[76]

Nicolaides
et al.

Prospective High risk Targeted MPS T21: 25
T18: 3
T13: 1

229 11–13 100 (25/25)
100 (3/3)
100 (1/1)

100 (204/204)
100 (226/226)
100 (228/228)

[77]

Abbreviations: GA: gestational age; MPS: massively parallel sequencing; NA: not available; T21: trisomy 21; T18: trisomy 18; T13: trisomy 13; XO: Monosomy X.
a High risk for aneuploidy is determined on the basis of one or more of the following: advanced maternal age, previous positive prenatal screen, fetal ultrasound abnormality, or prior

pregnancy with fetal aneuploidy.
b Mean/median gestational age is shown except when range values are provided.
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based NIPT for fetal aneuploidy into clinical practice [8,12,43,52]. These
professional societies agree that there is evidence that NIPT is a safe and
effective screening test for fetal aneuploidy in high-risk populations. It
can also be used as a follow-up test for those patients who have a
positivematernal serum screening test. It is recommended that patients
with positive NIPT results should be counseled about confirmatory
diagnostic testing.

Currently, NIPT is not recommended as a screening testing due to
less evidence from the published data using a screening population. In
Table 3
Summary of overall performance of studies listed in Table 2.

Case number TP TN FP FN Sensitivity
(%)

Specificity
(%)

Aneuploidy Total

T21 T21: 835 21,172 832 20,328 9 3 99.64
(832/835)

99.96
(20,328/20,337)

T18 T18: 315 21,068 309 20,737 16 6 98.10
(309/315)

99.92
(20,737/20,753)

T13 T13: 60 4444 56 4364 20 4 93.33
(56/60)

99.54
(4364/4384)

Abbreviations: T21: trisomy 21; T18: trisomy 18; T13: trisomy 13; TP: true positive;
TN: true negative; FP: false positive; FN: false negative.
the near future, once its clinical performance has been proven and the
cost of MPS has been lowered, we predict that NIPT will likely replace
the conventional maternal serum screening testing.

3.5. Regulatory requirements

With the rapid introduction of the MPS-based NIPT into clinical
practice, it is important to consider how this testing will be regulated.
Most recently, the College of American Pathologists (CAP) released the
latest edition of the Laboratory Accreditation Program checklist on July
29, 2013. The new checklist includes a focus on next generation
sequencing for maternal plasma to identify fetal aneuploidy. The CAP-
accredited clinical laboratorieswhich currently offer noninvasive prenatal
testing based on cffDNA must meet the new checklist requirements,
including requisition, quality control, quality assurance, and result
reporting (http://www.captodayonline.com/for-prenatal-ngs-labs-
new-accreditation-requirements-9135/).

4. Genome-wide fetal profiling

Deciphering the fetal genome sequence frommaternal plasma DNA
is another milestone in NIPT. In 2010, Lo et al. first demonstrated the
feasibility of genome-wide fetal profiling by deep sequencing of
maternal plasma DNA on the basis of parental genomic scaffolds [11].

http://www.captodayonline.com/for-prenatal-ngs-labs-new-accreditation-requirements-9135/
http://www.captodayonline.com/for-prenatal-ngs-labs-new-accreditation-requirements-9135/


Table 4
Mutant and wild-type ratio in autosomal recessive and X-linked diseases.

Disease Maternal
genotype

Fetal
genotype

Maternal plasma DNA (fe%=10%)

M (copies
per 100 GE)

W (copies
per 100 GE)

M:W
ratio

Autosomal recessive
disease

M W W W 90 110 0.82:1
M W 100 100 1:1
M M 110 90 1.22:1

X-linked disease M W
(X)(X)

W -
(X)(Y)

90 100 0.9:1

M -
(X)(Y)

100 90 1.11:1

Abbreviations: W: wild-type; M: mutant; GE: genome equivalent; (X): X chromosome;
(Y): Y chromosome; fe%= fractional fetal DNA concentration.
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The paternally and maternally inherited portions were deduced
respectively, by using corresponding parental genotyping information.

In this proof-of-principle study, the deduction of the paternally
inherited portion targeted the paternal-specific alleles. As fetal
DNA only accounts for a minor population in maternal plasma,
deep sequencing is required in order to generate sufficient statistical
confidence to rule-in or rule-out the presence of a paternal-specific
allele. By deep sequencing up to 65-fold, 93.9% of paternal-specific
alleles had been identified in the maternal plasma DNA with a
fractional fetal DNA concentration of 11.43%.

Deduction of the maternally inherited portion is more challenging,
as the maternal portion per se is identical to the maternal DNA
background. In principle, the maternal genome should have one
pair of haplotypes, namely haplotypes I and II. In this regard, with a
fractional fetal DNA concentration of 10%, there would be 5%
overrepresentation of haplotype I in maternal plasma, if haplotype I
had been passed to the fetus. Therefore, the deduction of thematernally
inherited portion is to identify the overrepresentation of the transmitted
maternal haplotype, which entails precise quantitative analysis. In
order to achieve such a goal, Lo et al. developed a method named
“relative haplotype dosage analysis” (RHDO) [11]. In Lo's proof-of-
principle study, the maternal haplotypes were deduced based on
genotypes of the parent-offspring trio by using SNPs that were
maternally heterozygous and paternally homozygous. The maternal
plasma DNA reads aligned to two maternal haplotypes were
accumulated respectively, and compared to each other. The allelic
accumulation and comparison continued along the maternal haplotypes
until a statistically significant classification had been drawn by sequential
probability ratio test (SPRT). As a result, segments ofmaternal haplotypes
were sequentially interrogated to reveal thematernally inherited portion.
In Lo's study, over 7000 RHDO classifications had been made across the
whole genome with error rate less than 0.2% using a consecutive-block
algorithm, in which two consecutive RHDO segments with the same
haplotype classification were required in order to conclude a switch in
haplotype inheritance.

Recently, another three publications further validated the feasibility
of fetal genome profiling in maternal plasma DNA by using the concept
introduced in Lo's study [53–55].

5. NIPT of monogenic diseases

Monogenic diseases affect approximately 1 in 100 live births, which
are caused by a defective gene [56]. Monogenic diseases are typically
sub-classified into 3 main categories: autosomal dominant, autosomal
recessive, and X-linked.

The NIPT of certain autosomal dominant diseases, in which father
carries the mutation, resembles the qualitative analysis used in fetal
sex or RhD status assessment. Examples included NIPT of Huntington
disease [57–59] and myotonic dystrophy [60]. A similar strategy could
also be applied to NIPT of another group of autosomal dominant
diseases, which are mainly caused by de novo mutation, such as
achondroplasia [61,62].

The NIPT of autosomal recessive diseases is considered as
challenging, since the maternally inherited portion of fetal genome is
identical to the maternal DNA background. Therefore, quantitative
comparison between the mutant and wild-type allele is required in
order to identify whether the fetus had inherited the mutant. For
example, assuming that the fractional fetal DNA concentration is 10%,
for autosomal recessive diseases in which both parents are heterozygous
carriers with the same mutation, the fetus would become affected if it
inherited both mutations from the parents. In this situation, the ratio
between mutant and wild-type allele would become 1.22:1 (Table 4).
The ratio would become 1:1 if the fetus is a heterozygous carrier, and
become0.82:1 if the fetus is normal. For X-linked diseases,mostlymother
carries a recessive mutation, and amale fetus would become affected if it
receives the mutation from the mother. Therefore, the NIPT of fetal sex
could serve as a first-tier screening test as described above. However,
further interrogation of mutation inheritance in male fetuses would
require quantitative analysis. In this situation, the ratio between mutant
and wild-type allele would become 1.11:1 if carrying an affected male
fetus, and become 0.9:1 if carrying a normal male fetus (Table 4).

In order to detect such subtle changes in the allelic ratio, a very
precise molecular quantification method is needed, such as single
molecule counting techniques. In 2008, Lo et al. developed a digital
PCR-based method named “relative mutation dosage” (RMD) analysis
for this kind of application [63]. In digital PCR analysis, the DNA
templates were diluted to a single molecule which enabled the precise
measurement of the wild-type and mutant alleles in maternal plasma.
The detection rate depends on the fractional fetal DNA concentration
and the number of molecules used for analysis. For example, with a
concentration of 0.5 template per well, a 765-well reaction can achieve
a detection accuracy of greater than 95% with a fractional fetal DNA
concentration of 20% [63]. If the fractional fetal DNA concentration
decreases by 2-fold (i.e., 10%), the number of wells would need to
increase by 4-fold (i.e., 22) in order to maintain the detection accuracy
(i.e., N95%). Pilot studies have demonstrated the feasibility of RMD
analysis in NIPT of autosomal recessive (e.g., β-thalassemia [63] and
sickle cell anemia [64]) and X-linked diseases (e.g., hemophilia [65]).

Another single molecule counting platform is MPS. In 2010, Lo et al.
introduced the concept of genome-wide fetal profiling by MPS of
maternal plasma DNA as described above [11]. In Lo's study, they also
demonstrated the combination of deep sequencing and RHDO analysis
for NIPT of monogenic diseases, using β-thalassemia as an example.
For the family recruited in that study, both parents were heterozygous
carriers of β-thalassemia. The father carried the CD41/42(−CTTT)
mutation, while the mother carried the nt-28(A→G) mutation. Deep
sequencing of maternal plasma DNA enabled the detection of CD41/
42(−CTTT), indicating that the fetushad inherited thepaternalmutation.
This result prompted the further investigation of fetal inheritance of
maternal mutation. RHDO analysis was performed across the disease-
causing region (i.e., HBB gene), and revealed that the maternal haplotype
carrying the wild-type allele was over-represented in maternal plasma.
The fetus did not inherit the maternal mutation. Therefore, the fetus
was a heterozygous carrier with mutation inherited from the father. In
clinical practice, however, deep sequencing in a genome-wide
manner would not be the most cost-effective approach. Recently, Gabriel
et al. introduced a targeted approach for RHDO analysis, in which
hybridization-based enrichment was performed to enrich the region of
interest before sequencing [66]. By using this approach, the NIPT of
monogenic diseases could be performed in a cost-effective and disease-
tailored manner.

Compared with RMD analysis, RHDO analysis requires additional
effort to work out the parental haplotypes. However, targeted RHDO
analysis demonstrates advantages in detectingmultiple mutations across
multiple disease-causing regions, whereas RMD analysis typically targets
one or a limited number of loci. In addition, as RHDO analysis targets the
adjacent alleles linked to the mutations rather than the mutations per se,
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it allows NIPT of certain monogenic diseases when direct interrogation of
mutations is considered challenging. For example, in congenital adrenal
hyperplasia, pseudogenes interfere with the mutation interrogation due
to their homology [67].

6. Conclusion

The existence of cffDNA in maternal blood holds enormous promise
for the development of NIPT. However, it is technically challenging to
detect circulating fetal DNA which is only a minor portion in the large
background of maternal DNA. In recent years, the technical barrier has
been overcome through the development of molecular techniques,
such as digital PCR andMPS. These highly sensitive and precisemethods
have enabled the successful introduction of NIPT into clinical practice,
such as fetal sex assessment, RhD genotyping, and fetal chromosomal
aneuploidy detection. In addition, the introduction of genome-wide
profiling of cffDNA by MPS holds great promise for detecting many
single-gene disorders in the near future.

Because of its noninvasive nature, broad applications, and availability
at an earlier gestational age, cffDNA testing provides a tremendous
opportunity to change prenatal genetic testing. However, such changes
will not be realizedwithout answering related ethical, practical, and social
questions. How will clinicians be educated? How might prospective
parents and physicians use the fetal genomic information? Can NIPT be
applied to pregnancies with complications (e.g., diabetes)? These and
many other questions have yet to be addressed.
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