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Abstract Polymerase chain reaction (PCR) is a major DNA amplification techno-
logy from molecular biology. The quantitative analysis of PCR aims at determining
the initial amount of the DNA molecules from the observation of typically several
PCR amplifications curves. The mainstream observation scheme of the DNA amplifi-
cation during PCR involves fluorescence intensity measurements. Under the classical
assumption that the measured fluorescence intensity is proportional to the amount of
present DNA molecules, and under the assumption that these measurements are cor-
rupted by an additive Gaussian noise, we analyze a single amplification curve using a
hidden Markov model (HMM). The unknown parameters of the HMM may be separa-
ted into two parts. On the one hand, the parameters from the amplification process are
the initial number of the DNA molecules and the replication efficiency, which is the
probability of one molecule to be duplicated. On the other hand, the parameters from
the observational scheme are the scale parameter allowing to convert the fluorescence
intensity into the number of DNA molecules and the mean and variance characterizing
the Gaussian noise. We use the maximum likelihood estimation procedure to infer the
unknown parameters of the model from the exponential phase of a single amplification
curve, the main parameter of interest for quantitative PCR being the initial amount of
the DNA molecules. An illustrative example is provided.
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1 Introduction

Polymerase chain reaction (PCR) has emerged as one of the main tool to amplify the
number of a specific fragment of target DNA molecules. This technique has many
applications in virology [8], microbiology [34], and gene expression analysis [24,55]
to name a few. As concerning the latter application, PCR is preceded by a reverse
transcription step, and is referred to as RT-PCR, in order to create DNA templates
from mRNA templates.

The quantitative approach of PCR (respectively RT-PCR) aims at determining the
initial amount of the DNA (respectively mRNA) molecules present in a biological
sample. Several quantification procedures are available in the literature. The most
popular one is based on a calibration curve constructed from many amplification curves
of a so-called standard [20,32]. Alternative methods relying on a single amplification
curve have been proposed. This enables one to reduce costs and to increase throughput
analysis because reaction tubes no longer need to be used for the standard curve
samples. It may also eliminate the adverse effect of any dilution errors made in creating
the standard sample curves [50]. These methods using a single reaction set-up are from
very various kinds, and they may be based on either deterministic or stochastic models.
Some methods rely on consecutive observations from the exponential phase above the
background noise. This phase is identified and modelled by a deterministic geometric
series for which the number of DNA molecules X;, present at replication cycle ¢,
is assumed to be defined by X; = Xo(1 + p)’, where p € (0, 1) is the replication
efficiency from the exponential phase [31,40,49,56]. In [1], the authors proposed
to use consecutive observations assumed to follow a similar geometric series with a
replication efficiency varying with the amount of accumulated molecules.

Other methods based on deterministic models consist in fitting sigmoidal functions
for the amplification curve constituted by observations of the amount of replicated
molecules from both the exponential and the non-exponential phases [21,42,43]. Using
a biophysical analysis of the enzyme activity in the course of PCR, a deterministic
model, based on the reaction equations derived from the law of mass actions, was
developed in [47].

Some methods account for the randomness inherent to DNA amplification.
Stochastic models for the DNA amplification based on the theory of branching pro-
cesses have been developed for quantitative PCR. They either rely on observations
from the exponential phase above the background noise, using then a Galton-Watson
branching process model [38], or they rely on observations above the background noise
from both the exponential and the non-exponential phases, using then a population-
size-dependent branching process model [22,26].

Some models discern small and long molecules [36] and some models account for
mutations affecting DNA sequences when they replicate [7,37,51]. But here, we will
not take these two features into account.

The main motivation of our study is to provide a tractable statistical method
to analyze a single amplification curve based on a sound mathematical model. This
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method takes into consideration the stochasticity inherent to the DNA amplification
and the stochasticity inherent to the collecting of PCR measurements. We consider PCR
experimental data observed through a fluorescence-chemistry based method which is
one of the main procedures used to record the kinetic accumulation of DNA molecules.

We present in Sect. 2 a quantitative procedure for analyzing an individual PCR
amplification curve relying on a hidden Markov model (HMM). Unknown parame-
ters arising in the proposed formalism are determined using the maximum likelihood
estimation method explained in Sect. 3. Usually, the implementation of the maximum
likelihood estimators (MLE) in the context of an HMM is done using the Expectation-
Maximization (EM) algorithm as described in Sect. 4. In our present model, because the
underlying Markov chain has an infinite state space, the EM algorithm is not applicable.
Instead, we propose to use a Monte Carlo EM (MCEM) algorithm when considering
an approximated model specified in Sect. 5. The method is illustrated in Sect. 6.

2 Mathematical model

The amplification of the number of DNA molecules as PCR proceeds may be dyna-
mically modelled using the branching process theory [25]. PCR is formed by the
succession of replication cycles. At each replication cycle, a DNA molecule is either
replicated successfully with probability p, or is not replicated with probability 1 — p.
We consider the exponential phase of PCR during which we make the classical assump-
tion that p is constant [32] with 0 < p < 1. We exclude from our analysis the extreme
theoretical cases p = 0 and p = 1 which are of no use in practical PCR experiments:
p = 0 means that no molecule ever replicates, and p = 1 means that all molecules
always replicate. Let X be the initial number of DNA molecules, and let X, be the
number of DNA molecules present at replication cycle 7. Denote by Y; ; the number of
descendant molecules from molecule i from cycle . If molecule i replicates correctly,
then Y;; = 2 with probability p, and Y;; = 1 otherwise with probability 1 — p.
We will assume that the offspring Y; ; are all independent and identically distributed
(i.i.d.). The number of DNA molecules present at cycle ¢ + 1 equals then

X
Xt+1 = ZYt’i’ with

i=1
PYri=2)=p=1-PY:,; =1.

The Markovian process {X,} is a Galton-Watson branching process. Following [46],
we will particularly rely on the fact that {X,} satisfies

X;11 = X, + Bin(X,, p)
because a sum of X; independent random variables Y; ; — 1 distributed as a Bernoulli( p)
random variable follows a Binomial(X;, p) distribution.

In practical PCR experiments, the numbers of DNA molecules as they replicate are
not directly accessible. The current method mainly used to measure the amount of
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DNA molecules as PCR proceeds relies on fluorescence chemistry [9,16,33,57], and
we consider here PCR data obtained with this type of chemistry.

We make the classical assumption that the fluorescence signal emitted by the DNA
molecules is proportional to the amount of these molecules [32]. In addition, we assume
that the fluorescence data are obtained with additive Gaussian errors. These errors are
either assumed independent of the number of DNA molecules (case 1 below), or they
are assumed to have a variance depending on the number of DNA molecules (case 2).
Therefore, under these assumptions, the fluorescence-chemistry based observation of
the number of DNA molecules as they replicate during the exponential phase of PCR
may be described by the following HMM: for allt € {1,2,...,n — 1},

X141 = X, + Bin(X,, p),

F, =aX; + &, with

case 1: & ~ N(uy, crtz), or
case 2: & X; ~ N(us, 02Xy).

ey

The initial number Xy of DNA molecules is assumed constant. The process {F;} is
assumed to be a sequence of conditionally independent random variables given the
hidden branching process { X, }. We consider two different cases. Incase 1, X, and ¢, are
independent, the background errors {¢;} are independent Gaussian random variables
with u;, respectively 0,2, being the mean, respectively the variance, of ¢;. In case 2,
the distribution of ¢; conditionally to X; is assumed Gaussian with mean u; and with
variance 0,2 =o2X ‘-

In the HMM terminology, the process {X;} is referred to as the regime, and {F;}
as the observational process. For a comprehensive review on HMM’s, the interested
reader is referred to [13].

Various models for the background noise have been proposed. The authors in [53]
considered a constant background noise variance and modelled the background noise
mean by u, = a(l — exp {—bt}) + c, where ¢ is the replication cycle. A linear model
W; = at+b with constant variance atz = o2 wasused in [21] and [49]. These proposals
for the background noise mean do not rely on any biophysical justification concerning
the fluorescence signal measurements, but they are rather based on visual inspection
of fluorescence data from so-called no template controls which do not contain any
DNA to amplify. Measurements from no template controls, which typically consist
in four replicates, provide information on the errors from the fluorescence measuring
device. It would seem more natural to assume a constant background level, and this is
what we will do here.

Perfoming a simulation study in [28], the author investigated model (1) in the
particular case 1 with y; = 0 and 0,2 = o2 using a Bayesian framework.

HMM’s are a particular instance of graphical models, they are namely dynamic
Bayesian network models [18]. The HMM proposed here is schematically represented
in Fig. 1.

Within model (1), we assume that the background noise is normally distributed with
mean 4, and variance o2. We will consider that the mean and variance of the errors
&¢ depend on an unknown finite-dimensional parameter denoted by 6,. For example,
assuming that u;, = @ and Utz =02 yields 6, = (u, o).

@ Springer



A quantitative approach for polymerase chain reactions 521

P
I R W
= /'-//-'. /,/"- l’_ IH‘R.'“"H:_%%‘“— q‘“"'hm_,

X, X, X, Xn_l X,
' ¥ ‘ v ¥
& &, & &,

Y " " "
I:‘I F2 Fn-1 I:n

Fig. 1 Graphical representation of model (1) as a dynamic Bayesian network model. A full line arrow
shows direct dependence between two elements. Arrows in dashed lines, accounting for the fact that
the distributions of &; conditionally to X; are parts of the model, are present only in case 2. The observable
random variables Fy, Fp, ..., Fy are in grey. The elements p, X and « are deterministic constants, the
other elements are random variables

We aim at estimating the unknown parameters of the model from the amplification
process and from the observational process. The unknown parameters of the ampli-
fication process are the initial number of the DNA molecules X and the replication
efficiency p of the PCR exponential phase. The unknown parameter of the observatio-
nal scheme is the parameter 9, characterizing the mean and variance from the Gaussian
noise. In case 1, we will in particular consider p; = p and atz = 02; in case 2, we
will consider ¢, = p. In both cases, the parameter 6, reads then 6, = (u, o2). But
the method presented here may also be applied to more general parametric forms for
e and 0,2. In addition, for the model to be identifiable, we assume that the scale para-
meter o between the fluorescence level intensity and the number of DNA molecules
is known.

We will rely on the observed realizations of Fy, F3, ..., F, from the exponential
phase of a single amplification curve in order to infer 8 = (X, p, ;). To this end, we
will use the maximum likelihood approach.

Remark 1 When considering case 1, one may use data from no template controls in
order to infer the parameter 6, from the Gaussian noise by the maximum likelihood
procedure. One may then use the observations of Fi, F», ..., F, to infer 6 = (Xo, p),
with 6, fixed to its estimated value based on the no template controls data.
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3 Maximum likelihood estimation

Let us introduce a few notations which are useful to define the likelihood of the
observations to be maximized for deriving the MLE of the true value of the parameter
6 in model (1).

The initial distribution of the underlying Markovian process {X;} is denoted by
7w = (; : j € N) and satisfies

T = P(X1=))
= P(Bin(Xo, p) = j — Xo)
_ C;{gxopjfx()(l — )77 with X < j < 2X,.

We will assume that X # 0, that is the biological sample contains effectively DNA
molecules to amplify. If Xo = 0, then X; = 0 forall# € N.
The transition matrix A = (a;;) of {X,} is such that, fori < j < 2i,

ajj = P(Xi11=jIX; =1)
= P(X; + Bin(X;, p) = j|X; = i)
= PBin(i, p) =j—1)
=7 =

For j > 2i or 0 < j < i, a;;j = 0. The Markovian process {X;} is said to be
homogeneous since a;; does not depend on ¢.

The conditional density b(-|x;), or emission distribution in the HMM terminology,
is given by

1
b(filx:) = eXp [_F(ﬁ — X — ,th)Z]-
'

1
J2na?

Let us write Fy.,, = (F1, ..., F,;) and X1, = (X1, ..., X;). The likelihood of obser-
ving Fi.,, under the parameter value 6, equals

P(F10|0) = >~ P(Filxin, 0) P(x1:0160)
X1:n

n—1

n—1
= > P(Filx1,0) [ [IP(Frgilxisr, 1P (x110) [ | Pxesils, 6)

Xl:n t=1 t=1

n n—1
=> [H b(Ftle)} L [ )
=1 t=1

Xl:n

The MLE of the true parameter value has no closed analytical expression. Its derivation
should be numerically performed, but the direct maximization of the likelihood (2)

@ Springer



A quantitative approach for polymerase chain reactions 523

is computationally demanding. In the context of HMM’s, the derivation of MLE is
mainly performed with the EM algorithm [6].

4 EM algorithm

The EM algorithm [10] is the tool of choice to calculate the MLE in an HMM. The EM
algorithm is also known as the Baum-Welch algorithm [4], or forward-backward algo-
rithm, in the case of classical finite state space HMM’s. It provides a computationally
efficient iterative method for local maximization of the log-likelihood function

£,(0) = log P(F1:110).

Starting from some initial parameter values, the EM procedure iterates between a step
that fixes the current parameters and computes posterior probabilities over the hidden
states (the E-step) and a step that uses these probabilities to maximize the expected
log-likelihood of the observations as a function of the parameters (the M-step).

More precisely, suppose that an estimate 6y of the parameter 6 is available at the
end of the k-th iteration of the algorithm. Let 6 denote some other estimate of 6.
The EM algorithm follows from the use of an auxiliary function defined from the
conditional expectation of the log-likelihood of the complete (hidden and observed)
data with parameter 6 for the given observation of F., and the current value 6 in the
following way:

E-step

0@, 6r) = E{log P(X 1., Fi:n, 0| Fin, 61)}, A3)

where Q is a function of the parameter 0, given the current parameter estimate 6 and
the observation of Fp.,. An updated estimate of 0 at iteration k + 1, denoted by 61,
is obtained as follows:

M-step

Ok41 = argmaxz Q (0., 6y).

It was noted in [10] that the inequality £,,(6x+1) > £,(0x) holds if 6y maximizes
0 (8, 6;) with respect to 6.

The two steps of the EM algorithm are alternated until the change in the parameters
is small. The EM algorithm is proved to converge as the number of iterations k tends to
infinity with a fixed number of observations » under some mild assumptions [35,54].
In practice, the algorithm may converge to a local maximum of the likelihood surface
of the HMM. A common practice is then to start the EM optimization algorithm from
several parameter values.

Maximization of the auxiliary function Q(6, ;) for a given sequence Fj., results
in re-estimation formulas for the parameter 6. In the case of Gaussian emission dis-
tribution and finite state space Markov chain, explicit formulas are available and
based on the forward and backward densities [4]. Define the forward density by
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a(xs, f11) = p(xs, f1+) representing the joint density of X; and the sequence F
to F;, and define the backward density by S( f;+1..|x;) representing the conditional
density of F;1 to F,, given X;. Fort =1, ..., n, one has

Py fr) = PG, fras fretm)
= p(xt, fl:t)p(ft+l:11|xt)
= a(xs, f1:0)B(fr+1m1x1).

The forward and backward densities satisfy the following recursions:

a(x, fra) =b(filx) D a1, fra-Dag,_ . forall2 <t <n

Xi—1

with a(x1, f1) = 7y, b(f1lx1), and

B(firinlxt) = D B(fisamlXerD)ay, v b(firilxigr),  foralln —1>1>1

Xr+1

with B(fy+1:nlxn) = 1. Recursions rely on the conditional independence of
(F1,..., Fy)and (Fy4q, ..., Fp) given X;, fort =1,...,n — 1 (see [39]).

The conditional probability density function p(x;| f.,), for all 1 < ¢ < n, can be
calculated as

a(x, fr.0B(fre1mlx)
> @G, fr)BSrstmlxn)

pxe| fim) =

and the conditional probability density function p(x,_1, x| f1.n), forall 2 < ¢t < n,
satisfies

a(xi—1, fre—D)BSfit1m |xt)ax,,1x,b(ft [x¢)
> 3 alis fra—)B(fistal Daigb(fil)

PXr—1, X | f10) =

These quantities appear in the expression of the auxiliary function Q to use in the EM
algorithm. The expression of (3) reads here

08, 6r) = E{log P(X1.n, Fin, 0| Fin, 6k)}

oo
= P(X1 = jlFin. 00 l0g 71 (x,<<2x0)

Jj=1
oo 2i n

+O DD P(Xioy =i, Xy = j|Fin. 00) log aij
i=1 j=i t=2
o0 n

+ DD P(X; = jIFi, 6) log b(Fi| X = ).
j=11t=1
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As a consequence, it is not possible to use the exact EM algorithm because it is
not feasible to compute forward and backward densities for an infinite number of
values. Even if the underlying branching process is restricted to take its values in a
finite set, say {1, 2, ..., Xmax}, the value of X;,x would be very large because X,
grows exponentially fast: for example, if Xo = 100 and p = 0.8, if one considers 20
observations, then Xy < Xo(1 + p)20 entails that Xna = 1.275107. Such a large
value for X,x prevents us from using the exact EM algorithm. We will rather use a
MCEM algorithm introduced in [52]. The principle of this algorithm is to replace the
E-step by a Monte Carlo integration procedure. Also, we will use an approximation of
the likelihood because this will lead to more tractable computations. The approxima-
tion will consist in replacing the binomial distribution in (1) by a Gaussian distribution.
If one uses the exact likelihood, then the unknown quantity X appears in a combi-
natorial term and this complicates the maximization step. In addition, in the case of
the exact likelihood when considering model (1), one should constrain the underlying
Markov chain in such a way that X; < X,4; < 2X,, and this would also complicate
the procedure. As a consequence, we propose to carry out an MCEM algorithm in an
approximated model.

5 MCEM algorithm in the approximated model

5.1 Principle

In order to render the estimation procedure more tractable, we will consider the
approximated model

Xiy1 = Xi + N(X;p, X; p(1 = p)),
Fy = aX; + ¢, with

case 1:&; ~ N (s, 07), or

case 2:&|X; ~ N(us, 02X,).

“

Given X/, the binomial distribution Bin(X;, p) from (1) may be reasonably approxi-
mated by the normal distribution N (X; p, X;p(1—p))if X;p > Sand X;(1—p) > 5.
Typically, these two inequalities hold when considering realistic values for p and X;.
Indeed, p belongs usually to the range [0.7; 0.95], and X¢ usually varies between a
few dozens and a few thousands, and X; > X forall + € N.

When approximating the binomial distribution by its normal counterpart, the tran-
sition probability of {X;} reads

P(Xiy1 = jlX: =1i) = P(N(X;p, Xy p(1 = p)) = j — X;|X; = 1)

1 1 . 2
AT =) eXp{_Zip(l ~ (— A+ pi)}

= ajj, say.
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The initial distribution satisfies
P(X| = j) =ax,; =7j, say.

Within model (4), we will use the MCEM algorithm. Instead of computing the
quantity Q(8, ) with 6y, the current parameter estimate, one simulates M realizations
xt, ..., xM of the hidden data X = (X1, ..., X») = X1 conditionally on the obser-
vable Fi., and given the current estimate 6y, and then one approximates Q(g , 0r) by

M
~ o~ 1 ~
Oum(0,6) = i E log P(x™, Fin, 0),
m=1

where, in view of formula (2),

n
P(xmv Fin, 5) = |:Hb(Ft|xt :|7Tx Hax;"xtml
t=1

with
«/227 eXp{_za%(Ff —ax" — )%} in case 1,
b(F,|x;") = |

/zﬂgzx;n €Xp{ 2% 2 m (Ft (X)Ctm — ﬁ)z} in case 2.
After re-arranging the terms, in case 1, P(x", Fy.,, §) equals

1 < N
exp H—E Z (Fy —ox]" — )?
t=1

1 1 1
(27[6')” \/XO Hn_—lxm (\/ﬁ(l - ﬁ))n

1
2Xop(1-p)

1
o =1+ pXo) — ZW(”“ (1 + p)x/" )}

and in case 2, P(x™, F.,, 5) equals

1 1 1 1 i 1 (F n_ oy
— - €Xpy—5=5 T\ —axy — |
(277,’0')" H; 11 xt \/X()Xm (\/p(l - P))" 202 =1 x;n !

1
2Xop(1—p)

1
(" (1+P)X0) - ZW(XHI (1+13)x;")2].

The parameter update 61 of the k-th iteration of the MCEM algorithm is given by
an ordinary M-step applied to Q;:

Ok+1 = argmangM(g, Ok).

As arule of thumb, it is advocated in [52] to increase M as iteration k increases.
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Convergence conditions for the MCEM procedure were studied in [6,14], and
[45]. It was emphasized in [45] that increased confidence in an MCEM procedure
can be obtained by running the procedure with different starting values for the para-
meters and by checking the nature of the limit points using the Louis method. The
Monte Carlo error inherent to the MCEM algorithm was investigated in [30].

In order to simulate a realization x of the hidden data X., conditionally to F.,
and to some parameter ¢, one may rely on a Markov Chain Monte Carlo (MCMC)
sampling scheme. MCMC methods consist in generating a Markov chain whose sta-
tionary distribution is the target distribution of interest. After some burn-in time, the
realizations of this Markov chain may be viewed as realizations of sampling from
the desired distribution. [19] provides an introduction to MCMC methods. The pro-
blem of assessing the convergence of an MCMC scheme to the target distribution was
investigated in [23].

For 6 given, one may update X, ..., X,, conditionally on Fy., by relying on the
Gibbs sampler [15,17]. This sampling scheme is based on the full conditionals of the
distribution of interest. It consists in drawing sequentially a realization of a variable
according to the distribution of this variable conditionally to all the other variables held
fixed. The variables are first assigned arbitrary initial values, and the Markov chain is
simulated until it converges to its stationary distribution. More precisely, for 6 given,
denote the distribution of interest by £(X1.,|F1:,). Consider that the full conditional
distributions L; (X;|F1.n) = L(X;1X1, ..., Xi—1, Xi+1, ..., Xu, F1.n) are available.
Gibbs sampling aims at approximating £ when generations from the £; are possible.
It provides an alternative generation scheme based on successive generations from the
full conditional distributions as follows:

Step 1. Set initial values X{?,z = (X§0), e, X,SO)).
Step 2. Obtain a new value Xij,z = (XY), ., XYY from Xi{n_l) through successive
generation of values

. i—1 i—1
X0 ~ £OXEY, X, By

. i—1 i—1 —1
Xéj)NE(leng ),Xéj ),...,X,(,j ),Flzn)

. . .
X~ LoxalxV70 XYY FL.

n—1

Step 3. Return to Step 2 until convergence is reached.

5.2 Improvement of the estimation method when the early observations are very
noisy

The estimation method that we propose is applicable if the Gaussian noise ¢; in (4)
is moderate relatively to the signal o X; coming from the DNA molecules. In most
practical experiments, the early observations are swamped by the measurement noise
and, as more and more DNA molecules accumulate, the measurement error becomes
smaller relatively to the signal arising from the DNA molecules. In order to take this
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feature into account in case 1, we suggest the following adaptation of the estimation
method presented above. The early observations contain information on the noise error,
whereas subsequent observations provide information on the parameters defining the
amplification process. Therefore, one may split the data Fi, . . ., F}, in such a way that
the early observations are used to infer the parameter 6, from the Gaussian noise, and
the rest of the observations is used toinfer (Xo, p). Wemay use F1, ..., F,;,withg <n
such that o X; is negligible relatively to &; for | < ¢ < g, and we proceed by maximum
likelihood estimation for inferring 6, = (u, o) assuming that the observations come
from i.i.d. realizations from a Gaussian distribution N (1, 0%) since aX; is negligible
relatively to &, for the considered F;. We may use Fj11,..., Fy, withh +1 > ¢,
in order to derive X;, and p based on the MCEM algorithm described in Sect. 5.1
with replacing Fi.p, X1:4 and 6 = (Xo, p, 0¢) by Fht1:ns Xnt1m, and 6 = (Xp, p),
respectively in the notations, and by setting 6, to its estimated value based on F1, .. .,
F,. An estimator of X may then be defined by the estimate of X, /(1 + ) based on
the relationship E(X;,/(1 + p)") = Xo.

5.3 Theoretical properties of the estimators

Within the framework of general HMM’s, consistency and asymptotic normality of
the MLE, as the number of observations n tends to infinity, have been investigated
[5,29], when the Markovian regime is stationary which is a classical assumption. Infe-
rential properties of non-stationary hidden Markov chain models were studied in [2]
in the finite state space case when considering a deterministic initial distribution. In
our case of interest presented in Sect. 2, the Markovian regime is a non-stationary
branching process with infinite state space. The authors from [11] investigated maxi-
mum likelihood inference for non-stationary HMM’s. They provided consistency and
asymptotic normality results for a MLE of the Euclidean parameter upon which the
transition kernel of the Markov chain and the conditional distribution of the obser-
vations depends. In [12], the authors proved asymptotic properties of the MLE in a
possibly non-stationary autoregressive process with Markov regime.

However, these asymptotic properties are of little use in the context of real-time
PCR data as one has at hand typically a few dozens of observations.

6 Illustration of the method

An example of application of the method is given. The experimental data at the author’s
disposal are unfortunately not suitable for the applicability of the proposed methodo-
logy. Indeed, with these experimental data, the conversion factor between fluorescence
units and numbers of molecules is not known, whereas the presented method assumes
that this quantity is given. As a consequence, we propose to illustrate the method with
synthetic data. Simulated data are obtained using version 6.0 of Mathematica (Wolfram
Inc.). The parameters of the simulation are: 6 = (Xo, p, u, o) = (50, 0.75, 0, 0.01).
The conversion factor & equals 1078, The values X¢ = 50 and p = 0.75 are chosen
as they represent realistic parameter values in PCR experiments. The mean and the
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fluorescence units

0 5 10 15 20 25
cycle

Fig. 2 Simulation of fluorescence data f1, ..., fn according to case 1 from model (1) with the parameter
values (X, p, u, o) = (50, 0.75, 0, 0.01), with the conversion factor « = 10*8, and with the number of
replication cycles n = 30

standard deviation of the Gaussian noise are taken in such a way that, together with
the given conversion factor «, they allow to reproduce the profile from the exponential
phase of real PCR data. See for example [21] for profiles of real data. The total num-
ber of replication cycles n equals 30. With these quantities, we simulate data from the
HMM (1) under case 1. The simulated data are drawn in Fig. 2

We apply the MCEM method described in Sect. 5 with M = 20 trajectories of
the Markov Chain and with 30 iterations of the EM step. Furthermore, we impose
some restrictions on the search space of the parameter in order to make the estimation
procedure more efficient:

— the estimator of X, denoted by Xo, should belong to the range [Xd"Wn Xup]
where we take X{ down — 10 and X, P = 100;

— the estimator of p, denoted by D, should belong to (0, 1);

— the estimator of u, denoted by 1z, should belong to [,udown, 1"P], where we take
Mdown — —1and Mup =1:

— the estimator of o, denoted by 7, should belong to 10, o"P], where we take 0P = 5.

The results depend on the initial parameter value used as a starting point for the
MCEM algorithm. With the initial parameter value (45, 0.5, 0.1, 0.1), the results are
the following: 6 = (Xo, P, 11, &) = (24.06, 0.507, 0.736, 1.972).

As the results are far from being satisfying, we follow the procedure described in
Sect. 5.2. On the one hand, we rely on F1, ..., Fy, with g = 15 to infer 6, = (i, o)

using the MLE, ie., I = + ZZ  Frando = \/l >9_, (Fx — )*. On the other

hand, we rely on Fj41, .. F,,, with 4 = 15 to compute the estimator (Xh D) using
the MCEM procedure and deducmg an estimator of X with the formula X}, /(1 + .
The obtained results are, using the same starting value for (Xo, p) as above, that is
(45,0.5): 6 = (Xo, P.11,G) = (44.439,0.499, —1.2471073,7.691 10~3), which
are better than the previous results except for the estimate of p. In order to improve
the estimation of the efficiency p, one may either impose stronger restrictions on the
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search range for this parameter, or use an other method to infer p as suggested in [27]
or [41] for example in combination with the MCEM scheme for the other parameters.

7 Concluding remarks

We have described how fluorescence PCR data might be analyzed using an HMM
accounting for the stochastic amplification of DNA molecules during the exponential
phase, and accounting for the observation of the process with Gaussian errors.

Several quantitative methods are available to analyze PCR experiments. Because
these quantitative methods rely on different parts of amplification curves, it is difficult
to compare them quantitatively but it is relevant to perform a qualitative comparison.
The standard curve-based method is usually used for quantitative PCR. It is based
on the assumption that there exists a linear relationship between the threshold cycle
at the exponential phase and the logarithm of the amount of molecules. It relies on
one data-point from amplification curves of several known dilutions of a standard
which has to be designed and validated. The generation of a standard curve is based
on the strong assumption that the efficiencies of each dilution sample are equal, which
may be questionable [3]. Another method relies on regression based on consecutive
observations from the exponential phase of a single reaction set-up [41]. These obser-
vations are assumed to be above the background level in such a way that, typically,
the first 15-25 observations are not accounted, and the following 4—8 observations are
considered. Using a stochastic model based on the theory of branching processes, and
relying on a single amplification curve, the reaction efficiency is inferred by condi-
tional least squares estimators based on consecutive observations of the exponential
phase in [38], or on consecutive observations spanning from the exponential phase
to the early plateau in [27]. But in these approaches, the noise inherent to the PCR
data is not explicitly accounted for. Some quantification procedures rely on a fitting
of an individual amplification curve by an S-shaped function [21], but these proce-
dures assume a deterministic evolution of the number of molecules with respect to the
replication cycle, which is a very strong approximation. The main advantage of the
quantitative approach presented here is that it allows one to consider both the uncer-
tainty from the amplification process (intrinsic uncertainty) and the uncertainty from
the measurement device (observational uncertainty).

The PCR exponential phase is followed by a linear phase and a plateau for which
there is a decrease in PCR efficiency, possibly explained by a decline in DNA poly-
merase activity or a depletion of certain reaction components [31,48]. It would be
challenging to extend the proposed study to account for data belonging to the linear
and plateau phases of PCR for which the accumulation of DNA molecules may be
modelled by a population-size-dependent branching process [22,27].

Because fluorescence data are measurements of intensity levels, a possible line
of investigation consists in performing a data preprocessing step before statistical
analysis, e.g., log-transformation of the data, similar to microarray data studies [44].
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