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ABSTRACT: Standard data analysis pipelines for digital PCR estimate the
concentration of a target nucleic acid by digitizing the end-point fluorescence
of the parallel micro-PCR reactions, using an automated hard threshold.
While it is known that misclassification has a major impact on the
concentration estimate and substantially reduces accuracy, the uncertainty of
this classification is typically ignored. We introduce a model-based clustering
method to estimate the probability that the target is present (absent) in a
partition conditional on its observed fluorescence and the distributional
shape in no-template control samples. This methodology acknowledges the
inherent uncertainty of the classification and provides a natural measure of
precision, both at individual partition level and at the level of the global concentration. We illustrate our method on genetically
modified organism, inhibition, dynamic range, and mutation detection experiments. We show that our method provides
concentration estimates of similar accuracy or better than the current standard, along with a more realistic measure of precision.
The individual partition probabilities and diagnostic density plots further allow for some quality control. An R implementation of
our method, called Umbrella, is available, providing a more objective and automated data analysis procedure for absolute dPCR
quantification.

Recently, digital PCR has become a mainstream technology
for detecting and quantifying nucleic acids (NAs), e.g., in

genetically modified organism (GMO) analysis,1,2 viral
diagnostics,3,4 copy number variation,5 and mutant detection,
among others. The technology uses chips or emulsion droplets
to generate hundreds to millions of tiny partitions in which
parallel micro-PCR reactions are performed on diluted template
material from a sample. The end-point fluorescence is used to
classify each partition as positive if an amplified target is
detected, or negative if no amplification is found. Finally, the
concentration of the target template can be estimated based on
the number of positive and negative partitions, the partition
volume, and the assumption that the number of copies in a
partition follows a Poisson distribution. Often, several dyes are
combined for assessing multiple NA targets simultaneously.
We recently showed that partition misclassification can have

a major impact on the accuracy of dPCR.6 This is illustrated in
Figure 1, which presents fluorescence intensities from different
experiments on GMOs. Classification based on an automated
threshold, provided by QuantaSoft companion software from
the Bio-Rad QX100 Digital Droplet PCR system, is
questionable at best. The center of the positive and negative
cluster can be estimated easily in both experiments, but the
classification of partitions that are between those centers is
difficult, especially in the right panel. Partitions that do not

clearly belong to the positive or negative cluster are often called
rain. However, manually tuning the threshold as an alternative
for the undisclosed QuantaSoft procedure may introduce
confirmation and researcher’s bias. In Figure 1B, changing the
threshold to include most rain in one of the clusters could lead
to as few as 7000 and as many as 9500 positive partitions and a
relative difference of 50% in the concentration estimates.
Hence, better classification methods are a priority to further

improve the accuracy in dPCR experiments. New data-driven
methods to calculate an improved hard threshold were
proposed,7,8 while others simply remove the problematic
partitions called “rain”.4,9 Since the proportion of positive
partitions in the rain can differ from the proportion of positive
partitions in the sample, selective removal of rain will often
introduce bias. Moreover, current dPCR data analysis work-
flows typically ignore the uncertainty of hard thresholding
fluorescence signals into positive and negative partitions,
consequently communicating concentration estimates with
unrealistic precision and accuracy.
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However, accurate and realistic measures of precision are of
vital importance10 and may be scrutinized extensively in fields
such as disease diagnostics11 and genetically modified organism
(GMO) testing.12 Validated quantification tools for GMOs in
food, for instance, are mandatory for the labeling of products
containing GM ingredients implied by the European Union
Regulations.13,14

We develop a model-based clustering method to classify
partitions, which assumes that observed intensities are drawn
from a mixture density with two components: one for the
partitions containing the target (positive) and the other for
partitions void of the target (negative). Using Bayes’ rule, our
method provides estimates of the probability that a partition
belongs to a specific cluster conditional on its observed
fluorescence, acknowledging the inherent classification un-
certainty.15 This probabilistic approach provides (i) more
informed and objective global concentration estimates, and (ii)
more realistic measures of precision that account for the
classification uncertainty.
Moreover, the individual partition probabilities are very

useful for quality control and in experiments that focus on the
detection of a target NA based on the mere presence of positive
partitions, rather than their number.

■ MATERIALS AND METHODS
We first introduce some terminology. A “partition” is an
amount of reaction mix submitted in a single reaction, typically
at the nanoliter or picoliter level, within a single droplet,
chamber, or microwell. A “partition set” refers to the set of all
partitions in one technical replicate of an experiment (typically
a single well in droplet-based systems or an array in chamber-
based systems). Technical replicates are multiple partition sets
from the same biological sample run under the same
conditions, while biological repeats are multiple partition sets
from distinct biological samples with the same properties. A
“run” or “experiment” is the joint name for a group of partition
sets that aim for the same target.

Mixture Model. We assume that fluorescence intensities x
observed in partitions of a target partition set A follow a
mixture density fA(x):

= + −f x p f x p f x( ) ( ) (1 ) ( )A 0,A 0,A 0,A 1,A

with f 0,A(x) and f1,A(x) being the densities of the partitions
without and with target copy, respectively, and p0,A and (1 −
p0,A) is the proportion of negative and positive partitions. This
is illustrated in Figure S-1 in the Supporting Information for

Figure 1. Fluorescence densities of different experiments. In panels
(A) and (C), the fluorescence intensities are well-separated between
positive and negative partitions. In panels (B) and (D), the right tail of
the null density (in gray) overlaps with the left tail of the positive
partitions (in blue), and considerable classification uncertainty can be
expected for many partitions. The red line denotes QuantaSoft’s
automated threshold for classification.

Figure 2. Fitting the mixture model using target and NTC partition sets. A generalized additive Poisson model is jointly fitted to aligned NTC (left
panel) and target (right panel) fluorescence intensity histogram counts. Corresponding nonparametric density estimates for the NTC f0̂ (cyan) and
target well fÂ (pink) are displayed in the top-middle panel. The bottom-middle panel depicts posterior probabilities that a partition is void of the
target. When multiple NTCs are available, confidence intervals can be provided reflecting the classification uncertainty due to between NTC
variability (dashed lines).
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different settings of rain. The parameter p0,A is used to convert
the dPCR signal into a concentration estimate relying on the
Poisson assumption. Note that state-of-the-art dPCR methods
estimate p0,A as the proportion of negative partitions upon hard
thresholding.
In many applications, model-based clustering builds on

mixtures of normal densities f 0,A(x) and f1,A(x) to facilitate
identifiability and yield stable and precise estimates. However,
early evidence suggests that dPCR partition densities cannot be
easily parametrized. The theoretical distribution of fluorescence
intensities was shown to be non-normal8,16 and is influenced by
technical factors such as partition volume17,18 and “cross-talk”
with the dyes of other channels.19 This is confirmed in Figure 1,
where heavy tails to the right and left are prominent for the
negative and positive clusters, respectively, even in the example
with limited rain (Figure 1C).
In the absence of obvious alternative parametric models for

the component densities, we resort to nonparametric density
estimation. We start by estimating marginal density fA(x) in the
target partition set A. The associated nonparametric density
estimation can be recasted into a Poisson regression problem.20

Since fA(x) is one marginal density, the component densities
are no longer identifiable from a single partition set. However,
the marginal distribution of no-template control samples
(NTCs) from the same experiment can be interpreted as a
realization of the overall null density of background
fluorescence and we estimate the negative component f 0,A(x)
by borrowing the shape (modulo standardization) of the NTC
distribution.
Parameter Estimation. The rationale of our method is

introduced in Figure 2 and Figure S-2 in the Supporting
Information.
(1) The modes of the null component of the fluorescence

densities of the target fA(x) and the NTC reference f 0(x) are
aligned.
(2) The aligned fluorescence intensities of the NTC and

target are discretized using histograms with the same bins.
(3) The bin counts of the NTC reference and target partition

set A are jointly modeled within a single Poisson regression
model, as described in the Supporting Information. This model
provides estimates p0̂,A, f0̂(x), and fÂ(x).
(4) The concentration of interest is derived from p0̂,A, using

the Poisson assumption, i.e., the average number of template
molecules per partition λÂ = −ln(p ̂0,A) and the estimated
concentration of the original sample cÂ = λÂD/VA, with V being
the volume of a partition, and D the dilution factor.8 This is
what we will call the main Umbrella estimator.
Model-Based Clustering. The mixture model also

provides posterior probabilities pi,0,A that partition i of set A
with fluorescence intensity xi is void of the target sequence:
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However, this estimator is not bound to decrease monotoni-
cally with increasing fluorescence intensities. Therefore, we
propose an additional bounded antitonic regression step on the
estimated partition probabilities to enforce monotonicity. Final
probabilities p ̂i,0,A are useful in various applications.
(1) As an Alternative Estimator for p0,A (e.g., in Detection

Experiments). In addition to the aforementioned results, our
procedure reports the number of partitions that have a

probability pî,0,A >80% (negative partitions with a probability
of, at most, 20% to be a false negative), p ̂i,0,A < 5% (positive
partitions with a probability of, at most, 5% to be a false
positive), and 5% ≤ p ̂i,0,A ≤ 80% (rain). One minus the ratio of
positive partitions (pî,0,A < 5%) over the total is reported as an
alternative estimator for p0,A. This is what we will call
Umbrella’s threshold estimator. In detection experiments
where the absolute number of positive partitions is often very
low, Umbrella may not be precise and methods that classify
individual partitions are more useful to address the detection
problem.
Note that, generally,
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Hard thresholding is a special case where K partitions are
classified as negative and have probability pi,0,A = 1 and the
remaining partitions are considered to be positive with
probability pi,0,A = 0.
(2) For Quality Control. Heavy tails, volume effects and

inhibition can be identified by studying the relative decrease of
p ̂i,0,A in the right tail of f 0,A. Both the absolute number of
partitions in the rain as well as the precision of individual
partition probabilities in the rain may be informative.

No-Template Controls. If multiple no-template controls
(NTCs) are available, our procedure will be repeated for every
partition set and every NTC within the same experiment.
Results from multiple NTCs for the same target will be used to
improve the concentration estimate and to quantify its
associated precision.
No-template controls (NTCs) play an important role in

qPCR and are also very useful in dPCR applications.21

Depending on primer and probe sequence and concentration,
they can look remarkably different between and even within
experiments (see Figure S-4 in the Supporting Information).
Ideally, NTCs mimic the real sample as closely as possible,
without containing the target sequence, i.e., they should include
all reaction components and preferably would undergo the
same sample prep as real samples. In addition, it is good
practice to provide multiple NTCs to capture their variability
and to account for the corresponding uncertainty, both at
individual partition and overall concentration level. Our
method is able to propagate this information into the
corresponding confidence intervals (see the Supporting
Information (Section 6) for more details).

Multichannel Extension. Umbrella, which is similar to
current state-of-the-art methods, is developed for single-
channel data but can be trivially extended to multichannel
data by adopting it repeatedly on the fluorescence intensities of
multiple channels. Note that overlapping color spectra of the
dyes, so-called “cross-talk”19 and calibration issues can lead to
rotational problems in the true multivariate null distribution
and to differences for partitions that have a different status
(pos/neg) in at least one other channel. Current state-of-the-art
methods, such as hard thresholding, largely ignore these
features.
We have developed an automated procedure for two-channel

data that orthogonalizes rotated data and corrects for possible
cross-talk. We are currently extending this to higher
dimensions. Details can be found in the Supporting
Information (Section 7).
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Data and Software. The method is illustrated on data from
several droplet digital PCR experiments performed on a QX100
instrument (Bio-Rad) by Biogazelle (Zwijnaarde, Belgium).
(1) A GMO detection and quantification experiment

designed by Scientific Institute of Public Health (WIV-ISP),
Brussels, Belgium. Species-specific and transgenic sequence
templates were diluted aiming at 5000 copies/μL and 8 copies/
μL based on previously obtained ddPCR data. To verify the
concentration of the final dilution, the target was remeasured in
all vials of the diluted samples using a single-channel ddPCR
assay. At least two different vials of the diluted sample were
prepared per target and three technical replicates were run on
each vial. For each target, no-template controls (NTCs) were
included in triplicate.
(2) A dynamic range experiment designed by Biogazelle. The

cDNA input amount in the PCR was gradually increased from
5% to 45% (v/v) undiluted reverse transcription product in the
final PCR and subsequently analyzed. The goal was to
determine the dynamic range (and maximum input) for
which the target could be properly quantified. Too much
cDNA input leads to competition and inhibition of the signal. A
total of nine different input amounts and an NTC were
analyzed in duplicate. The data were measured on two channels
and show increasing rain as a function of input amount (Figure
S-6 in the Supporting Information). This dynamic range
experiment can also be considered as an inhibition experiment
with a variable amount of template input and inhibitor.
(3) A dedicated inhibition experiment (constant template

input, variable inhibitor) designed by Biogazelle. PCR was
gradually inhibited with either NEB4 restriction digest buffer
(added to constant amount of digested gDNA) or RT buffer
(added to constant amount of cDNA). Two experimental mixes
with respective input concentrations of 40 ng of digested
human gDNA (targets CLIC6 and RPP30), and 25 ng of

melanoma cDNA (targets SAMMSON and RPP30) were
gradually inhibited. For each mix, seven inhibition settings and
an NTC were assessed in triplicate.
(4) A mutation detection experiment designed by Biogazelle.

The optimal probe annealing temperature and cross reactivity is
determined for four TaqMan SNP genotyping assays to be used
in a mutation detection experiment. The assays are tested on
digested wild-type DNA, synthetic mutant DNA, and NTC.
For both DNA samples, 7200 copies were used as input.
All analyses were done in R 2.15.1 and R 3.1.2,22 using the

packages MASS (7.3−18), modeest (2.1), mgcv (1.7−29), and
OrdMonReg (1.0.3). We are currently preparing an R/
Bioconductor package with our method. In the meantime, all
code and nonconfidential data needed to repeat the data
analyses in this manuscript are available at github.com/
statOmics/umbrella.

■ RESULTS AND DISCUSSION

Quantification. Quantification is evaluated using the GMO
dataset with a high concentration stock of species-specific and
transgenic sequences. In Figure 3, our concentration estimates
are often higher than those obtained with the default setting of
Bio-Rad’s QuantaSoft software, which does not account for
possible false negatives in the rain. The main Umbrella
estimator (shown in blue in Figure 3) is also higher than the
optional hard threshold estimator (in green). The latter
conservative estimator uses a cutoff of 5% on probability to
be negative and misclassified some of the rain. In experiments
with light rain (tNOS and SPUD), our confidence intervals
(shown in black in Figure 3) have a similar width as those from
QuantaSoft (shown in red in Figure 3). In the panels on the
right side of Figure 3 (pat), Umbrella gives much wider
confidence intervals for the target than the QuantaSoft method.

Figure 3. Concentration estimates for GMO data. The concentration estimates with their respective confidence intervals (CIs) are displayed for four
different targets. For each experiment except pat 1 and pat 2, a dilution was aliquoted in three vials that were each analyzed with three technical
replicates. The technical replicates for each vial are plotted adjacently. The last three results for every target are the NTCs. The black CIs with blue
concentration estimates (CEs) were obtained with the main Umbrella estimator, the black CIs with the green CEs were based on Umbrella’s
threshold estimator and the red CIs are obtained with the default hard threshold method from Bio-Rad’s QuantaSoft software. Since the data showed
some rain, with tNOS, SPUD, and pNOS resembling Figure 1A, Umbrella consistently finds higher concentrations, because it is more robust against
rain than hard thresholding methods. Our CIs are always wider as they incorporate both the uncertainty from the classification, as well as the Poisson
variation. For pNOS, a deviant NTC caused high variability in the results (pNOS 1). Removing it gave stable results (pNOS 2). For pat, the rain was
much heavier than for other targets, shown in Figure 1B. In pat 1, QuantaSoft software returned a “No Call” for two of the three target partition sets.
In a follow-up experiment (pat 2) on a new sample, QuantaSoft did return concentration estimates.
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This was an experiment with heavy rain, of which one partition
set is shown in the right-hand panels of Figure 1.
At the partition level, the method is more capable than the

hard threshold methods, with regard to identifying and
quantifying partitions in existing rain. Based on between-
NTC variability, Umbrella is able to give an estimate of the
probability that a partition contains no target copy, as well as a
CI (Figure 2). CIs may be wide and sometimes include the
complete [0;1] probability range, implying complete classi-
fication uncertainty, which is sometimes inherent to the data
and appears correct. Partitions in the (far) right tail of the null
density in a sample with heavy rain could realistically be all
negative or positive.
The main Umbrella concentration estimator gives accurate

estimates that agree with state-of-art methods on a dataset with
clean data (not shown). In simulations with different settings of
rain, its estimates are consistently closer to known concen-
trations than current standard methods (see Figure S-7 in the
Supporting Information). For real data with rain, it returns
concentration estimates that are less perturbed by rain and, in
that sense, superior to hard thresholds. This happens because it
only uses the information on the null density around its mode.
Deviations in the mode estimation sometimes happen and may
affect the main estimator, as shown for one of the pNOS
partition sets. However, the threshold estimator is more robust
to deviations in the mode estimate and is not affected. When a
majority of inhibited positive partitions shows fluorescence
intensities that are typical for the negative cluster, Umbrella
cannot recognize them and, therefore, is unable to return
accurate results. However, its bias will be smaller than that
observed with current standards (see the pat example of Figure
3 and the highly inhibited examples in Figure S-7).

Detection. Concentration-based estimates can be unreliable
in detection experiments, which aim for assessing the presence
(absence) of a specific NA sequence in a sample. Instead, we
suggest partition-specific classifiers for detection.
Umbrella returns the posterior probability pî,0,A that partition

i is void of NA, given its observed fluorescence intensity. It
enables users to consider partitions that (a) are almost certainly
positive (p̂i,0,A ≈ 0), (b) may well be positive (0 < pî,0,A < 1,
rain), and (c) are almost certainly negative (p ̂i,0,A ≈ 1). In our
output, we provide the number of positive partitions by
applying the threshold p ̂i,0,A < 5%. This alternative method gives
a conservative concentration estimate, because it only counts
partitions that are almost certain to be positive (#P), leading to
a larger estimate of the proportion of negative partitions p ̂0,A =
1 − #P/nA. This is illustrated in Figure 4. This estimator is
accurate for the data shown in the left panel, when there is no
rain, but conservative for data shown in the right panel.
The number of possible rain partitions (5% < p ̂i,0,A < 80%) is

also shown in the output. In the left panel of Figure 4, the
negative and positive partitions are well-separated, which
translates into probabilities of either 1 (shown in blue) or 0
(shown in red), with only a single partition that may need
further evaluation. In the right panel again, a few partitions are
undoubtedly positive, shown in red with a probability to be
negative of 0. However, the consistent heavy tail shows that
many partitions have a fluorescence intensity that is so rare,
relative to the NTC reference density, that they should not
automatically be considered negative, resulting in probabilities
not close to 0 nor 1. The CI for each partition and the number
of partitions in the rain category reflect the number of doubtful
partitions. Since this pattern is present in all partition sets of
this experiment, it is likely that either some of the partitions
were true positives or that there is a technical problem.

Figure 4. Partition probabilities from detection experiments. The left panel shows a partition set from the GMO experiment, while the right panel
displays the results of a publicly available partition set.8 In the left panel, the positive partitions are well-separated from the negative partitions. All
partitions with a fluorescence intensity above 2000 (in red) are classified as positive (pi,0,A < 5%) without much doubt while only 1 partition is truly
doubtful. We can confidently say that we detect target NA in the sample corresponding to the left panel and we have an estimate for its
concentration. In the right panel, the positive partitions are not well-separated from the negative partitions. In all partition sets of this experiment,
including the one shown here, the mixture density shows a consistent heavy tail to the right that is consistently thicker than the tails of NTC
references. While a few partitions (in red) are undoubtedly positive, many more show a fluorescence intensity that is sufficiently rare, compared to
the NTC reference density. Hard thresholding methods are not able to discover this pattern, while Umbrella gives the user a more-detailed view of
the limitations of the experiment. Although we suspect that this sample contains target NA, we cannot draw any strong conclusions about its
concentration. This type of pattern may be caused by an inhibited positive sample, a contaminated negative sample, or technical deviations as a result
of baseline shifts or volume problems.
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Umbrella thus provides the advantages of using a hard
threshold when it is appropriate, while allowing for a useful
measure of uncertainty when partitions cannot be easily
classified. The use of a hard threshold seems appropriate for
the first experiment (left panel of Figure 4), but does not take
the large classification uncertainty of the second experiment
(right panel of Figure 4) into account. This would lead to
inaccurate results with an unrealistically small reported
precision.
Quality Control. When the null density has heavy tails (for

example, due to nonconstant partition volumes or baseline
shifts), Umbrella will correct for this if NTCs show the same
pattern. It will provide realistic estimates, possibly with wide
confidence intervals for partitions in the tails (e.g., the right
panel of Figure 4). Relatively small deviations between partition
sets may have a substantial impact on the partition estimates in
the tail. The CIs at the partition level are a unique tool to
understand the true variability of their potential classification.
The width of a partition-specific CI can be used as a quality

measure to identify partitions or partition sets with deviating
properties, for example, because of volume problems or
changes in baseline fluorescence correction within or between
partition sets. Both instances are reflected in skewed densities
with long tails, which can be recognized by wide confidence
intervals around the right tail of the negative cluster. An
example is shown in the Supporting Information.
Sometimes, the CI of the overall robust estimator may also

indicate quality issues. In the pNOS example of Figure 3, the
first of the three NTCs showed a substantially deviating pattern
from the others. This is immediately reflected in the very wide
confidence intervals shown under “pNOS 1”. When this deviant
NTC was dropped when estimating the null component, the
problem was resolved and CIs with natural widths are
recovered under “pNOS 2”. The automatic method of Bio-
Rad did not discover this problem and it is also difficult to pick
it up by eye, even after being aware of the problem (see the
Supporting Information).
Multichannel Data. Our model-based clustering method

can also be used for obtaining concentration estimates from
multichannel data. Upon suitable preprocessing, it can be
adopted on univariate projections. The procedure is illustrated
on the two-channel dynamic range, inhibition, and validation of
mutation detection datasets.
The dynamic range dataset showed a substantial tilt (Figure

S-6). Our fully automated procedure was able to correct for
rotation and cross-talk while obtaining plausible concentration
estimates. The results were consistent with those from Bio-
Rad’s QuantaSoft software when using a manual, subjective
threshold where the cutoff was placed as closely to the negative
cluster as possible. This highly subjective and researcher-
dependent threshold was only possible because we had prior
information on the experiment. The automated threshold of the
QuantaSoft software produced inferior results, because it
classified many partitions in the rain as negative. Umbrella is
objective, recognizes rain, and assigns realistic probabilities to
its partitions. The basic concentration estimator p0̂ showed
relatively high variability between the technical duplicates. In
contrast, taking the average of the partition probabilities as the
concentration estimator showed similar between-duplicate
variability as the results from the QuantaSoft software while
retaining other advantages. This estimator may show potential
for multichannel data.

In the dynamic range dataset, digital PCR is able to quantify
the concentration correctly for up to 20% (v/v) cDNA input.
With a subjective manual threshold and the model-based
clustering method, 25% (v/v) could be achieved in one channel
and 30% (v/v) in the other. In addition, Umbrella is able to
detect targets up to 40% (v/v), a setting in which the standard
methods return either a “No Call” or “no target detected”
(Figure S-12 in the Supporting Information).
In the mutation detection experiment, some partition sets

showed clear nonspecific amplification. This caused rotational
issues in single false positive clusters appearing as “upward rain”
in one-dimensional QuantaSoft plots (Figure S-8 in the
Supporting Information). Umbrella corrects for rotation and
also recognized a higher variation in single positive clusters,
which were, on average, about a third wider than the null
reference. As a result, we obtained remarkably fewer false
positives, compared to hard thresholding in the QuantaSoft
software (Supporting Information, Section 10) while giving
similar concentration estimates as the reference on the
concordant channel (Figure S-11 in the Supporting Informa-
tion).
The quality control provided by our method can help

researchers understand when the results are not an indication of
a clean sample without target, but rather of a problematic
sample that requires revision. In the inhibition experiments, for
instance, Umbrella was able to objectively match the result of
the default hard thresholding provided by Bio-Rad’s QuantaSoft
software when the amount of buffer was limited. While it was
impossible to find target when there was too much buffer for
any method, our method did find that the density of seemingly
negative (highly inhibited) partition sets was atypical and
different from the expected density of NTCs. We noticed that
the density of highly inhibited sets showed less variation and
had a higher peak, which was clearly visible when the ratio with
the null (NTC) density was taken. This property was not
visible by eye but could be used as quality control in
experiments. More details and other methods for QC can be
found in the Supporting Information.

■ CONCLUSIONS
Many sources of variation affect the precision of dPCR
concentration estimates.23 Most contributions treat the
inherent Poisson variation embedded in each technical run as
the primary source of variation, while other sources of variation
within or between partition sets are largely ignored. The
classification uncertainty, for instance, has been identified as a
major source of variation within partition sets.6

While manufacturers and users alike may prefer hard
thresholds for simplicity, we feel that it is important to
acknowledge that the outcome of every partition is subject to
random variability. Umbrella quantifies the precision of the
classification for each partition by reporting the probability that
it belongs to a specific cluster. The quantification of this
precision is, itself, a first step that captures a single additional
variance component and, thus, subject to further improvement.
Nevertheless, it is important to acknowledge classification
variation to avoid reporting unrealistic precision. Ideally, this
approach is extended to include additional variance compo-
nents, within and between partition sets and technical repeats,
such as unequal partition volumes and sampling errors.
The partition-specific probabilities are useful quality

measures, which can flag problematic partitions that are difficult
to quantify. The method is able to address heavy tails in the
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intensity distribution of negative partitions, which appear as a
consequence of unequal volumes or baseline changes. With
substantial rain, Umbrella acknowledges the classification
uncertainty of partitions in the right tail of the null density.
Unfortunately, this is also occasionally reported to be due to
the technical and stochastic variation of the observed null
density between partition sets, which is a feature that may yet
turn out to be avoidable.
When results are reported, the final judgment resides with

the critical user. Blindly applying hard thresholds risks the
cultivation of a false sense of security and an overt trust in the
technology. Additional software support may routinely provide
the info needed (including a wide range of quality control
measures) to optimize performance of the technology.
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