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Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precisemethods.
The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in
relation to the precisemeasurement of CNAswhereas the costs ofmassively parallel sequencing are still relative-
ly high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to de-
tect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic
(chip) and emulsion (droplet)-based technologies have already been integrated into platforms offeringhundreds
to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the
field of cancer research, prenatal testing, transplantation medicine and virology support translation of this tech-
nology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or pla-
cental cells among a large background of homologous sequences facilitates unraveling of the early stages of
cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associ-
ated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the
recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment
of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or trans-
plant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in
precise and sensitive quantification of CNAs.Moreover, I provide an insight into the types of potential clinical ap-
plications that have been developed by researchers to date.

© 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Blood plasma is a dynamic medium that contains much molecular
information that is reflective of an individual's health condition. The
fact that nucleic acids freely circulate in human bloodstream has been
known for more than 60 years [1]. More recent studies have shown un-
equivocal evidence that the majority of circulating nucleic acids (CNAs)
in plasma of healthy individual is derived from hematopoietic cells un-
dergoing apoptosis [2,3]. Tumor tissue, transplanted organs, and placen-
ta also contribute to the pool of plasma CNAs [4–8]. Circulating nucleic
acids therefore give the unique opportunity to noninvasively diagnose
or monitor pathological states in cancer, organ transplant patients, as
well as women over the course of pregnancy.

However, there are many technical challenges associated with the
biological nature of plasma CNAs, i.e. degraded nucleic acids originating
from tumor, organ graft, or placental cells represent a minority of the
total amount of CNAs floating in plasma [9,10]. Therefore, only highly
precise and robust methods would be able to detect and quantify the
minor species of CNAs contributed by the additional source. The unceas-
ing technological advancement moves the frontiers in research of CNAs
constantly forward. By counting individual molecules in the sample as
offered by dPCR technique, one can achieve this goal with enhanced
sensitivity and precision.

2. Digital PCR technology

2.1. Principles of digital PCR

The concept of absolutemeasurement of nucleic acids by singlemol-
ecule counting was reported in 1992 by Sykes et al. recognizing the
merit of limiting dilution and Poisson statistical analysis [11]. Diluted
template is distributed into individual PCR reactions and the original
template amount is gauged by the number of partitions with a positive
amplification with respect to the total number of analyzed partitions.
The distribution of the molecules throughout partitions is a random
and independent process [12] and optimal template dilution usually as-
sures that only one target molecule per reaction partition is examined.
When using a higher template concentration, the actual number ofmol-
ecules would be underestimated because some partitions contain more
than one template molecule. The Poisson statistics can correct for this
distortion to some extent. Fluorescence chemistry is used to interrogate
the presence or absence of specific PCRproduct [13]. Ultimately, data in-
terpretation does not depend heavily on sophisticated bioinformatics
analysis. For some applications, the sequential probability ratio test
may be used to measure the strength of evidence for the allele distribu-
tion being different from normal [14].

2.2. Digital PCR platforms

To transform the powerful potential of dPCR into efficiently working
platforms, the process of single molecule amplification must take place
in a highly stable environment. The choice of platform depends mainly
on the trade-off between the degree of precision, throughput and the
costs of the system and the assay.

The first generation of dPCR platforms were based on chips contain-
ing microfluidic channels such as those made by Fluidigm [15] and
plates with hydrophilic and hydrophobic surfaces such as those by Life
Technologies [16]. The target molecule is monitored in real-time condi-
tions, thus false positive reactions could be inferred from the amplifica-
tion curve of each reaction. With the demand for higher sensitivity and
precision, platforms providingmuch higher number of digital partitions
were needed. Hence, companies have launched systems where each
dPCR reaction takes place in aqueous droplets in oil coupled with end-
point reading of the PCRs. Despite the fact that these platforms cannot
perform real-time PCR measurement, the immense number of reaction
partitions with uniform size led to a dramatic extension of the dynamic
range. Twenty thousand reaction droplets could be generated per reac-
tion by the platform developed in the BioRad Laboratories, which pro-
vides quantitative measurement across 4 orders of magnitude [17,18].
On the other hand, millions of reaction partitions could be handled by
the system by RainDance Technologies, further expanding the dynamic
range [19]. The BEAMing digital PCR technology (beads, emulsion, am-
plification and magnetics) provided by Sysmex Inostics [20,21] clonally
amplifies nucleic acids in the presence of magnetic particles and as-
sesses its quantity by using a flow cytometry. This dPCR strategy has
found a wide application especially in cancer research [22–27].

2.3. Advantages of digital PCR

Currently, quantitative real-time PCR (qPCR) is still a more popular
choice for nucleic acid measurement, mainly because of the lower
costs. The use of external calibrators is the core for analytical perfor-
mance in qPCR and may vary among laboratories. In contrast, quantifi-
cation of nucleic acids in dPCR does not rely on external references
and shows an increased tolerance to enzyme-inhibiting substances
[28,29]. Even though both technologies share essentially the same fluo-
rescence chemistry for nucleic acid detection, the distinct power of
dPCR for sensitive and precise measurement lies in the number of par-
titions allowing for simultaneous template amplification, concurrently
dictating the dynamic range. The latest development of dPCR technolo-
gy employing thousands tomillions of reaction partitions thus provides
a scalable environment [17,19]. Consequently, dPCR offers measure-
ment of nucleic acids with superior precision, sensitivity and reproduc-
ibility over qPCR [30–33]. The coefficient of variation, corresponding to
a measure of analytical precision, has been shown to be significantly
lower for dPCR compared to qPCR [10,28,34–37]. Moreover, a template
compartmentalization reduces the background DNA and contaminant
levels which consequently increases the signal-to-noise ratio in positive
reaction partitions and thus improves detection sensitivity [38].

The technique is extremely powerful in detection ofminute traces of
nucleic acids without the need for a pre-amplification step, thus
preventing introduction of an assay-specific bias [30,32]. Duplex dPCR
has been shown to provide even more precise measurement than
uniplex dPCR for the detection of limited concentrations of plasma
CNAs [32]. By adjusting the amplicon length, primer concentration,
and annealing temperature, one can achieve equally precise discrimina-
tion of multiple targets in one reaction using DNA-binding dye over the
same dynamic range as with TaqMan chemistry [39].

3. General applications of digital PCR

The aforesaid inherent features of dPCR, which are far beyond the
scope of detection abilities of other methods, make this approach
unique for several research applications. The dPCR technology allows



Fig. 1. Schematic representation of the general application of chip or droplet digital PCR technology for the research of circulating nucleic acids.
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for sensitive detection of rare mutations, accurate quantification of
slight alterations in copy number variations, differentiation between
changes in gene expression, or assessment of the methylation status
(Fig. 1).

3.1. Rare variant detection

The early stages of tumor formation are associated with minute
amounts of tumor-derived CNAs released into the bloodstream requir-
ing employment of extremely sensitive detection methods. Cancer re-
search therefore benefits considerably from the ability of dPCR to trace
such a scarce genetic material. By effective partitioning of nucleic acids
and counting thousands tomillions of reaction partitions, one can detect
tumor-derived mutations or rare variants present in extremely low
abundance. The analytical power of dPCR allows single-nucleotide-
variant detection below one copy per 100,000 wild-type sequences
[40]. For example, it is possible to trace one KRASmutation in the back-
ground of 200,000 wild-type molecules using the picolitre scale drop-
lets [19]. Similarly, a single-color assay based on non-specific double-
stranded binding dye could detect arbitrarily prepared mutation in
concentration of less than 1% among the wild-type BRAF variant, sug-
gesting that the approach is applicable for research of CNAs [41].

3.2. Gene copy number variation analysis

Copy number variations (CNVs) are among the most prevalent
causes of structural variability of DNA responsible for the human geno-
mic diversity [42]. At the molecular level, CNVs are composed of gene
amplifications or deletions, a genetic variability often observed in a pro-
cess of tumorigenesis [43].

To date, the potential of dPCR technology has not been extensively
explored in detection of CNVs by testing plasma circulating nucleic
acids. Nonetheless, previous studies indicate that dPCR would be an
ideal molecular tool in this research field [33,44,45]. Investigations on
the breast cancer cell lines showed superior precision and sensitivity
of dPCR compared to qPCR in detection of subtle fold-differences of
HER2 gene copy number variation [33]. Quantitative real-time PCR re-
vealed presence of HER2 gene amplification in plasma of patients with
breast cancer [44], thus giving the opportunity to refine its detection
by the digital single molecule counting strategy [46]. Furthermore,
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detection of multiple regions by using a strategy called Multiplex Tem-
plate Sampling described by Petriv et al. can further increase the tem-
plate concentrations for CNVs assessment [45]. The use of non-specific
double-stranded binding dye in dPCR similarly provides a highly sensi-
tive and specific quantification of CNVs in a multiplex format simply by
adjusting the size of the targeted region [41].

3.3. Gene expression analysis

Regulatory RNAmolecules modulating the gene expression, namely
microRNA (miRNA) and long non-coding RNA (lncRNA), affect basic
cellular processes like cell cycle progression, cell differentiation and ap-
optosis [47]. Several studies report thatmiRNAs have a high potential to
be a blood-based biomarker in cancer detection [48] aswell as in prena-
tal testing research [49–51]. Ma et al. reported the use of dPCR as a po-
tential tool for quantitative assessment of miRNA in plasma of lung
cancer patients by observing significantly higher copy number of
miRNA compared to controls [52]. Similarly, encouraging results were
observed in a study focused on the measurement of circulating lncRNA
expression in human serum [53]. Nevertheless, as stated in the dMIQE
(Minimum Information for Publication of Quantitative Digital PCR Ex-
periments) guidelines, the quantitative analysis of RNA using RT-dPCR
still requires careful consideration of the experimental design and
final data reporting [54].

3.4. Analysis of methylation loci

DNA methylation plays a central role in epigenetic inheritance and
its alteration is often involved in cancer or pathological processes
resulting in genome instability and deregulation of cell growth [55].
Similarly, changes in methylation pattern have been observed in
pregnancy-associated pathological states [56,57]. Bisulfide treatment
modification of plasma DNA may reveal the DNA methylation alter-
ations of placenta DNA associated with pathological conditions and
serve as effective noninvasive biomarkers.

Digital PCR has been used to quantitatively assessmethylation status
at specific loci in plasma of patients with colorectal cancer [25] and
breast cancer [38]. Li et al. developed a methyl-BEAMing technology
whereby increasing the ability to detect curable early-stage colorectal
cancers with the same precision as currently used next-generation se-
quencing platforms [25]. Additionally, a method calledmicrofluidic dig-
ital MethyLight has been successfully tested for cancer-specific DNA
hypermethylation events present in plasma of breast cancer patients
[38].

4. Bringing digital PCR into clinical use for nucleic acid detection

In 1999, Vogelstein and Kinzler's pioneering study on quantification
of ras oncogenemutations associatedwith a colorectal cancer highlight-
ed the potential clinical utility of dPCR [13]. However, laborious and
low-throughput setup hindered the possibility for routine application
in a clinical setting, thus urging a focus on its practical improvement.
Development of microfluidic devices and emulsion PCR with reaction
volumeminimized to nanoliter up to picoliter extent represented a sub-
stantial advancement [17,19].

Subsequently, diverse applications of dPCR for research of CNAs, fa-
cilitated by the practicality of currently available platforms, have paved
the path into clinical use in several areas. Cancer research as well as the
field of noninvasive prenatal testing (NIPT) highly benefit from the an-
alytical sensitivity of dPCR to detect low concentration of target CNAs.
Additionally, precise quantitative assessment of viral load and organ
graft-derived CNAs hold the promise for effective monitoring of treat-
ment therapy for immunosuppressed or transplant patients. Likewise,
the possibility to precisely measure levels of circulating mitochondrial
DNAwould help to provide further insight into the pathology of several
diseases.
4.1. Noninvasive prenatal testing (NIPT)

The discovery of fetal nucleic acids circulating in maternal blood [6,
7] began the journey of developing noninvasive prenatal tests in preg-
nancy management. The risk for fetal chromosomal aneuploidies or
single-gene disorders is an indication for performing prenatal diagnos-
tic tests, which conventionally required the invasive sampling of fetal
genetic material by amniocentesis or chorionic villus sampling. CNAs
have the potential to enhance the efficacy of prenatal care without the
risk associated with the invasive procedures and could be performed
regardless of the gestational window.

The fact that fetal CNAs constitute only a minor fraction of the total
pool hindered the initial attempts to develop such a noninvasivemolec-
ular protocol [10]. Moreover, a discrimination of the maternal causative
mutations inherited by the fetus appeared to be another challenge.
Methods for single molecule counting, including digital PCR, provided
an elegant solution for a direct assessment of fetal mutation status.

4.1.1. NIPT of fetal aneuploidies
To noninvasively detect fetal aneuploidy, a method must be able to

distinguish subtle alterations in plasma DNA concentration with a de-
gree of deviation associated with the aneuploid chromosome linearly
proportional to the fetal DNA fraction. Lower fetal DNA fractions ulti-
mately result in a demand for higher number of molecules to be exam-
ined. In the first trimester pregnancies, the proportion of fetal DNA in
maternal plasma accounts for about 10% of total circulating DNA [10].
Digital PCR-based data simulation of Evans et al. shows that if only 2%
of fetal DNA enhancement can be achieved, an extremely high number
of counts would be needed to achieve a clinical significance for aneu-
ploidy detection [58]. Consequently, taking into consideration approxi-
mately 1000 DNA copies per milliliter [10], the approach using even the
latest dPCR technology accommodating such high number of molecules
would require impractical volume of maternal plasma (100 mL) for
pregnancies with extremely low fetal DNA fractions. On the other
hand, with respect to already established methods for fetal aneuploidy
detection, digital PCR would represent a time- and cost-effective alter-
native for pregnancies with sufficient levels of fetal DNA.

Two groups simultaneously outlined a principle of digital PCR-based
trisomy 21 detection of the fetus [59,60]. Using artificial DNA mixtures,
the authors successfully assessed gene dosage between chromosome
21 and a reference chromosome. Unlike the RNA-SNP method for
trisomy 21 detection developed previously [59], this approach was
polymorphism-independent, although still limited by a high initial
plasma volume to assess fetal trisomy 21 status.

Later, by targeting fetal hypermethylated epigenetic marker on
chromosome21 and ZFY gene onY chromosome, amethod called digital
epigenetic–genetic chromosome dosage strategy allowed an accurate
discrimination between normal and affected pregnancies [61]. Alterna-
tively, to demonstrate application of the same approach in a gender-
independent manner, paternally inherited fetal SNPs on a reference au-
tosomal chromosome were used instead of the Y chromosome marker,
although still restricting the analysis to cases with informative SNPs
[62]. Therefore, in order to increase the population coverage, Tsui et al.
examined mRNA encoded by PLAC4 gene for prenatal screening of
trisomy 21 using two approaches, namely PLAC4 RNA–SNP approach
for heterozygous cases and PLAC4 mRNA-quantification approach for
homozygous cases [63]. As measured by microfluidic digital PCR, a sig-
nificant increase in plasma PLAC4 cDNA concentration in the trisomy
21 pregnancies has been observed, thus supporting its potential applica-
tion as a screening tool for fetuses homozygous for the targeted PLAC4
SNP.

4.1.2. NIPT of single-gene disorders
Driven by the curiosity to explore the use of dPCR for single-gene dis-

orders, Lun et al. developed a strategy for the detection of fetal alleles
inherited from the mother heterozygous for beta-thalasemia mutation
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[64]. The relative mutation dosage (RMD) method together with a size
enrichment strategy, namely digital nucleic acid size selection (NASS),
has proven the applicability for noninvasive prenatal diagnosis of
single-gene disorders. Furthermore, the RMD approach has been found
to be extremely robust for the detection of fetal hemophilia mutations,
representing the X-linked disease model, clinically manifested in male
fetuses [65]. In addition, Barrett et al. proved the feasibility of the RMD
approach using dPCR in pregnancies at risk of sickle cell anemia and rec-
ommended further optimization of fetal DNA fractions by designing a se-
ries of biallelic indel markers with shorter amplicons in order to improve
its performance [66]. As the study of Barrett et al. was informative only in
65% of the female-bearing pregnancies, Gu et al. proposed an alternative
strategy exemplified by an autosomal recessive disorder, methylmalonic
acidemia [67]. A set of multiple SNPs was used to determine fetal DNA
fractions regardless of fetal gender. To assess the mutational state of
the fetus two methods were developed: a direct strategy, targeting the
mutation, and an indirect strategy, using a set of multiple SNP markers
linked to the mutation to be evaluated by z score statistics. Since all of
the described methods are based on detection of allelic imbalance, the
accuratemeasurement of fetal DNA fractions is a critical factor in the suc-
cessful determination of fetal single-gene disorders.

4.1.3. NIPT of other pregnancy-related complications
Even though prenatal RHD genotyping is already established as a

clinical service for pregnant women at risk for complications related
to Rh immunization, traditional qPCR approach seems to have limita-
tions in particular instances. Presence of an intact but dysfunctional var-
iant RHD gene caused by point mutations would result in RhD negative
phenotype, prone to maternal sensitization to fetal D antigens [68].
Using dPCR technology, Tsui et al. were able to correctly identify
fetal wild-type RHD genotype against the background of maternal
RHD(IVS3 + 1G N A) mutation in maternal plasma [69].

Whitehead and Tong have outlined another exciting application of
dPCR to monitor the degree of fetal hypoxia to prevent stillbirth or
childhood disability associatedwith hypoxia [70]. The authors previous-
ly showed that circulating hypoxia-induced RNA transcripts were sig-
nificantly increased and appear to be correlated with a degree of fetal
hypoxia [71] and dPCR would find its place in the validation of candi-
date biomarkers.

4.2. Cancer research

Identification and characterization of CNAs in plasma of cancer indi-
viduals [4,5] have sparked an interest in developing noninvasive ap-
proaches facilitating early detection, treatment monitoring, and
screening for disease recurrence. As the tumors are highly heteroge-
neous, plasma CNAs derived directly from the tumor tissue are expected
to represent a full repertoire of mutations [72]. New somatic mutations
can develop during the tumor treatment, thus contributing to non-
responsiveness of the originally effective drug and an urgent need for
therapy replacement [73–75].

With the technological advances to sensitively detect CNAs originat-
ing from the tumor, the term “liquid biopsy” has started to be pro-
nounced even more frequently [76]. To track tumor development at
an early stage, an extremely sensitive method must be able to pick up
only few copies of mutation-associated allele released into the blood-
stream by a tumor and recognize them from the normal variant back-
ground. A recent study of Bettegowda et al. examines different tumor
types in a large cohort of patients and confirms the wide use of dPCR
in research of circulating tumor DNA (ctDNA) to effectively screen for
somatic mutations in KRAS gene and to concurrently monitor the effect
of therapy by detecting of newly developed EGFR mutations [77]. Al-
tered quantities of circulating tumor nucleic acids have been described
in several cancer types [9,78–83] andmay play a role as amolecular bio-
marker of tumor progression and therapy efficacy.
4.2.1. Breast cancer
Abnormality in regulation of the phosphoinositide 3-kinase (PI3K)

pathway in patients with breast tumors is caused by somatic mutations
of the gene encoding PI3K catalytic subunit p110alpha (PIK3CA) [84].
The BEAMing technology allowed detection of ctDNA harboring
PIK3CA mutations in plasma of breast cancer patients [27]. As observed
in this study, fast tumor evolution of PIK3CA mutational status upon
disease recurrence reinforces the need for contemporary assessment
to administer efficient therapy. In a study by Jelovac et al., the same
technology revealed the presence of PIK3CA mutation harbored by the
breast tumor, at concentration 0.0759% of the total circulating DNA in
pre-operative plasma, and was found undetectable after surgery [85].
Recently, droplet dPCR technology accurately detected PIK3CA muta-
tions in plasma of patients with early-stage breast cancer in both pre-
and post-surgery samples, thus allowing stratification of patients by
measuring residual disease as being at higher or lower risk for recur-
rence [86]. Moreover, by quantification of ctDNA carrying specific
PIK3CA and TP53 somatic mutations in plasma of breast cancer patients,
the microfluidic dPCR provided the earliest measure of treatment
response in half of patients receiving systematic therapy [87].

In addition to commonmutations in PIK3CA gene, the human epider-
mal growth factor receptor 2 (HER2) gene has been found amplified in
25 to 30% of human breast cancer [88]. The existence of amplified
HER2 gene in circulating DNA has been reported previously [44] imply-
ing its use as a potentialmarker for breast cancer patients. The BEAMing
strategy has shown a high accuracy in detection of oncogenic amplifica-
tion of the HER2 copy number, reporting a 90% concordance with
tumor-derived status, which suggests the use of this approach for any
amplified locus in cancer [46].

4.2.2. Lung cancer
Activatingmutations in the epidermal growth factor receptor (EGFR)

tyrosine kinase have been shown to be responsible for the responsive-
ness to tyrosine kinase inhibitors (TKI) [89–91]. A microfluidic dPCR
system accurately detected and quantified two common EGFR muta-
tions in plasma of non-small cell lung cancer (NSCLC) patients [92]. A
strong association between plasma EGFR mutation levels and the
clinical response seems encouraging to use this strategy to monitor
the effect of treatment therapy. Furthermore, a recent study quantita-
tively assessed EGFR and KRASmutant alleles using droplet dPCR in se-
rial plasma samples of NSCLC patients and shows that this approach
allows for the prediction of development of clinical resistance several
weeks ahead, and thus guides the treatment [93]. A major problem in
TKI therapy represents an acquired resistance attributed to T790M sec-
ondarymutation in EGFR gene [73]. By using the BEAMing technology, a
ratio of the resistance forms of mutation and the number of activating
mutations may be useful in monitoring patients with advanced stages
of lung cancer [26].

4.2.3. Colorectal cancer
Inactivation of the tumor suppressor genes, APC and p53, and activa-

tion of the oncogene Kirsten-ras (KRAS) play an important role in the
colorectal tumor development and its progression [94]. It has been de-
scribed earlier, that CNAs harboring mutations associated with these
genes can be found in plasma of individuals with colorectal cancer
[95–98]. A BEAMing technology allowed for characterization of the na-
ture, quantity, dynamics andmechanism of the CNAs release by investi-
gating tumor-associated genes in plasma of colorectal carcinoma
patients [22,23]. Importantly, the authors report that more than 60%
of patients whowere not yet metastasized exhibited detectable mutant
fragments in plasma [22]. The same research group characterized pa-
rameters critical for detecting colorectal tumor-associated mutations
using the BEAMing technology on plasma and stool samples [24]. They
confirmed themutational status only in 50% of plasma cases attributing
this observation to a lower plasma volume and suggested using stool
samples of patients with colorectal cancer rather than plasma. On the
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other hand, a picodroplet dPCR detected tumor-associatedmutations in
plasma of colorectal cancer patients in a multiplex manner and demon-
strated that this strategy is suitable for a sensitive screening of rare mu-
tations in a clinical practice [99].

4.3. Mitochondrial DNA research

Mitochondrial DNA, contrary to thenuclear genome, is only a 16.5 kb
long, circular double-stranded nucleic acid present in many copies in a
mammalian cell, inherited bymaternal lineage and found to be associat-
ed with the pathogenesis of diseases [100]. In 2000, circulating mito-
chondrial DNA (cmtDNA) has been observed in plasma of patients
with type 2 diabetes mellitus [101]. In plasma of healthy individuals,
mtDNA is present as both a particle-associated as well as a free form
of nucleic acid, with concentration highly affected by the blood-
processing protocol [102]. The distinct nature of these plasma nucleic
acids has been further corroborated in studies observing no correlation
between the levels of cmtDNA and gDNA [103,104].

Altered quantities in cmtDNA of cancer patients, as measured by
qPCR, support the notion that mitochondrial nucleic acids may be
potentially useful biomarker in early detection of neoplastic transforma-
tion process, tumor progress monitoring and post-treatment follow-up
procedure. Several studies indicate that levels of cmtDNA appear to be
tumor specific; circulating mtDNA levels have been found elevated in
patients with epithelial ovarian cancers [104] and urological malignan-
cies [103,105,106]. In contrast, significantly decreased cmtDNA levels
have been observed in breast cancer patients, presumably due to altered
replication rate and a subsequent decrease of mtDNA copy number
[107]. Moreover, in advanced prostate cancer patients, cmtRNA seems
to be the strongest predictor of overall survival and an independent
prognostic factor for cancer-related death [103]. To date, only one
study reports on dPCR used for cmtDNA levels assessment [108]. In ce-
rebrospinal fluid samples of Alzheimer's disease patients, the cmtDNA
shows a significant reduction observed even before the appearance of
clinical symptoms for age-related disease.

To verify whether using dPCR on plasma cmtDNA can bring an
insight intomanagement of cancer patients, scrutiny in thewhole spec-
trum of tumor types would be of clinical importance. Further studies in
different research fields would reveal a possible significance of cmtDNA
for other clinical scenarios.

4.4. Transplantation medicine

Organ transplantation between individuals with different genetic
makeup results in activation of recipient's immunological response
against the transplant and subsequent liberation of an increased
amount of donor's genetic material into bloodstream [109]. Circulating
DNA released from the graft has been observed in plasma of transplant
recipients [2,8,110] and its quantitative changes have been found to be
associated with acute graft rejection [111,112]. Therefore, Snyder et al.
explored the use of microfluidic dPCR in sex-mismatched transplants
in female patients with heart transplantation [110]. They tracked the
patient's response by quantification of chromosome Y marker at multi-
ple time points to show that donor DNA levels higher than 0.5% ap-
peared to be indicative of organ damage. Similarly, droplet dPCR has
been used on a set of SNPs to differentiate between donor and recipient
DNA to measure proportion of fragments released by the transplanted
organ in plasma of recipients after liver, kidney and heart transplanta-
tion [113]. Recently, Oellerich et al. further confirmed the use of graft-
derived cell-free DNA as an organ integrity biomarker to establish min-
imally effective immunosuppressant concentrations for patients after
liver transplantation [114]. Digital PCR technology therefore seems to
significantly improve post-transplant monitoring, prevent patients
from invasive biopsies and eventually set a personalized immunosup-
pression therapy by measuring donor's DNA reflecting the health of
the graft organ.
4.5. Virology

Presence of cell-free viral nucleic acids has been reported in 1999 in
plasma of patients with nasopharyngeal carcinoma (NPC) by detecting
EBV-associated DNA and has been shown to be associated with the dis-
ease stage [115]. Plasma EBV DNA levels were found approximately
eight times higher in advanced NPC than in early-stage disease and
were not detectable in patients with complete tumor regression, while
the patients with disease persistence still showed higher levels.

Quantitative analysis of viral-derived nucleic acids is already used as
a tool for screening and monitoring of immunosuppressed, transplant
and cancer patients using standard qPCR. However, several recent stud-
ies show superior performance of dPCR technology by measurement of
DNA levels of HIV virus in infected patients [36] or an occult RNA virus
in cell culture supernatants [116]. Brunetto et al. further confirm the
use of droplet dPCR by quantification of human T-lymphotropic virus
1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP
patients to be of clinical relevance [35]. Recently, Sedlak et al. and
Hayden et al. were the first to assess viral load in post-transplant mon-
itoring for cytomegalovirus [37,117]. Their results show that clinical ap-
plication of droplet dPCR would be beneficial, although still premature
at the current stage, thus urging for further investigations in this field.
5. Limitations, suggested improvements and future perspectives

Even though the first commercial platform for digital PCR has
already been on the market since 2006, compared to already well-
established qPCR, revelation of its full potential in clinical setting is
only at the beginning. The first step towards implementing dPCR into
clinical application has already been taken by publishing the dMIQE
guidelines providing a framework to report experimental details for
improving reproducibility among different laboratories [54].

Huggett et al. comprehensively describe factors, such as the suscep-
tibility to systematic bias leading to underestimation, that have to be
taken into consideration to reliably interpret dPCRdata before its imple-
mentation as a diagnostic tool [118]. Whale et al. recently reported one
of the reasons for analytical imprecision in dPCR [32]. A phenomenon
called “molecular dropout” is a source of technical variation caused by
a failure to detect presence of a targetmolecule attributed to failed tem-
plate amplification due to its secondary structure. Since the occurrence
of molecular dropout in dPCR is observed for more complex templates
like genomic DNA, the influence on the analysis of CNAs seems to be
negligible. Presence of concatemermolecules for theHER2 copy number
detectionmay represent another potential limitation [33] and structural
chromosomal abnormalities, such as balanced translocations or inver-
sions are challenging to be directly detected [119]. Moreover, the detec-
tion specificity may be decreased in the presence of pseudogene or
multiple sequences on the same DNA strand.

Despite the fact thatmeasurement of low copy RNA targets has been
proven accurate [31], variability and inefficiency related to the reverse
transcription step adds to the complexity of RNA quantification and fur-
ther urges for requirement of calibration controls [54]. A report on
quantification of cell-associated HIV-1 RNA underlines the awareness
of the false positive signals in dPCR [120]. As reported by others, there
are still unexplained false positive events occurring when detecting
HIV viral load [36]. Therefore, an optimal assay design is critical to pre-
vent cross-reactivity and occurrence of false positives [118].

Undoubtedly, dPCR is a cost-effective alternative to the currently
used next-generation sequencing platforms, however suitable only for
analyses when the prior knowledge about the mutation is available,
thus relying on a personalized assay design. Additionally, this technolo-
gy may be used to work in concert with next-generation sequencing
platforms to determine the input material by providing accurate quan-
tification of DNA libraries [28]. Sequencing technology can also benefit
from obtaining separate heterogeneous templates generated in dPCR
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for the detection of heterogeneous methylation patterns in cancer re-
search [38].

At present, dPCR is one of the most powerful methods available for
an accurate quantification of a scarce amount of CNAs in plasma. It is
therefore expected that more research in this area will establish this
technology in a broad spectrum of clinical scenarios where the reliance
on precision and sensitivity offered by dPCR is of the highest priority.
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