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a  b  s  t  r  a  c  t

PCR  is  a common  and  often  indispensable  technique  used  in  medical  and  biological  research  labs  for
a  variety  of applications.  Real-time  quantitative  PCR  (RT-qPCR)  has  become  a definitive  technique  for
quantitating  differences  in  gene  expression  levels  between  samples.  Yet,  in  spite  of  this  importance,  reli-
able  methods  to  quantitate  nucleic  acid  amounts  in a higher  throughput  remain  elusive.  In  the following
paper,  a unique  design  to  quantify  gene  expression  levels  at the  nanoscale  in  a continuous  flow  system  is
presented.  Fully  automated,  high-throughput,  low  volume  amplification  of deoxynucleotides  (DNA)  in  a
droplet  based  microfluidic  system  is  described.  Unlike  some  conventional  qPCR  instrumentation  that  use
integrated  fluidic  circuits  or plate  arrays,  the  instrument  performs  qPCR  in  a  continuous,  micro-droplet
flowing  process  with  droplet  generation,  distinctive  reagent  mixing,  thermal  cycling  and  optical  detection
platforms  all  combined  on one  complete  instrument.  Detailed  experimental  profiling  of  reactions  of less
than  300  nl  total  volume  is  achieved  using  the  platform  demonstrating  the dynamic  range  to  be 4  order
logs  and  consistent  instrument  sensitivity.  Furthermore,  reduced  pipetting  steps  by as  much  as  90%  and

a unique  degree  of hands-free  automation  makes  the analytical  possibilities  for this  instrumentation  far
reaching.  In conclusion,  a discussion  of the  first  demonstrations  of  this  approach  to  perform  novel,  contin-
uous  high-throughput  biological  screens  is presented.  The  results  generated  from  the  instrument,  when
compared  with  commercial  instrumentation,  demonstrate  the  instrument  reliability  and  robustness  to
carry out  further  studies  of clinical  significance  with  added  throughput  and  economic  benefits.

© 2015  The  Authors.  Published  by  Elsevier  GmbH.  This  is  an  open  access  article  under  the  CC
ignificance statement

Differential gene expression levels have been shown to greatly
nfluence many biological conditions in both normal and abnormal
ircumstances and can provide valuable information into tissue
nd cell developmental behaviour in response to environmen-
al stimuli. The microfluidic droplet technology described greatly
nhances the ability to analyse the expression levels of hundreds
f genes across hundreds of samples in a continuous flow regime
hile using reduced volumes of both sample and reagents. Reac-

ions are carried out on a single high throughput instrument which
rovides reliable sensitivity and quantitative precision for differ-
ntiating gene expression variability between biological samples.

haracterising these expression level changes is critical for multiple
athway analysis, biomarker classification and drug discovery.
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.0/).
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The polymerase chain reaction (PCR) [1] is the dominant method
of choice for quickly generating a sufficient amount of identical
genetic material for analysis in biological investigations. The need
higher throughput with an increased level of specificity coupled
with reduced volumes of reagents is a dominant factor for the PCR
and gene expression profiling in particular. Existing methodologies
such as microarrays [2,3] and digital PCR [4,5] (dPCR) are extremely
powerful tools for studies in that they allow one to probe virtually
the entire transcriptome to give an overall picture of gene expres-
sion behaviour [6,7] and genetic mutations [8]. These technologies
are well established and allow for the screening for multiple poten-
tial biomarkers and drug targets. However, limitations in dynamic
range make the detection of transcripts in low abundance problem-
atic [9] and their results for any given gene are often ambiguous

due to system noise interference [10]. Commercial dPCR microflu-
idic platforms such the BioMark (Fluidigm) and OpenArray (Life
Technologies) use microfluidic technology to generate and analyse
partitioned samples and enable high throughput gene expression
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easurement [11,12]. This facilitates thousands of assays to be
erformed in parallel. Thermal cycling and fluorescence detection

s performed on integrated fluidic circuits and plates which are
igh throughput and use low starting quantities but are sometimes

imited by their fixed format and the necessity to pre amplify tar-
ets which at times has been suggested to introduce amplification
ias [13]. More recently the SmartChip system (Wafergen) targets
he gap between hybridisation-based microarray technology and
CR [14]. The platform comprises a nanodispenser module and a
ycler, which performs PCR thermal cycling and data collection.
ntegrated systems like this that enable a flexible workflow for high
ensity gene expression profiling allow for more genetic analysis
o be performed with more variation. Further to this, technologi-
al innovations in the fields of DNA sequencing address many of
hese issues and provide an unprecedented level of information for
he discovery and validation of novel RNA biomarkers [15]. How-
ver much of their limitations and possible pitfalls of real in-depth
ranscriptome sequencing are not well known and tools to ana-
yse the wealth of information to its maximum are also limited.
herefore it has become common practice to check the results of

 genome-wide study with RT-qPCR which has excellent sensitiv-
ty, dynamic range, and reproducibility and is widely regarded as

 “gold standard” measurement [7]. Considering the current use of
PCR for molecular microbiological testing in the clinical labora-
ory, high-throughput RT-qPCR devices are also likely to be at the
orefront of transcript-based diagnostics in the near-future [16].

Utilising microfluidic approaches provides numerous advan-
ages for DNA amplification [17–19] and other diagnostic
pplications [20] such as economies of scale, parallelisation and
utomation, and increased sensitivity and precision that comes
rom small volume reactions. The advantage of microfluidics is not
nly the ability to perform high-throughput sample analysis but

lso the ability to perform experiments out of the range of existing
echnologies [21,22] Furthermore, microliter to nanoliter droplet
olumes allow several thousand PCRs to be performed in parallel

ig. 1. Graphical schematic of the GEI (Gene Expression Instrument) design showing prim
omprises of liquid bridge technology, fluidic handling systems, an integrated pumping s
nalysis  software platform.
on and Quantification 4 (2015) 22–32 23

[23,24] or a continuous-flow based approach in which the temper-
ature is kept constant over time at specific locations in the system,
and the sample is moved between the individual temperature zones
for cycling [25,26]. Additionally, the challenge associated with real-
ising the desired economies of scale in microfluidic devices is to
simultaneously reduce the number of pipetting steps while amor-
tising the sample volume from each pipetting step over a large
number of independent assays [27]. The type of instrument that
the end user chooses ultimately depends on the specific appli-
cation(s) that will be carried out. Many microfluidic systems for
PCR [24,28,29] which have been developed offer many advantages
such as reduced reaction volumes, higher thermal cycling speed
and decreased reagent and mastermix consumption. These droplet
based microfluidic systems are created by two  immiscible phases,
typically aqueous droplets held within a non-aqueous carrier fluid
such as silicone oil [30]. This creates a wrapped droplet which acts
as a bioreactor in this system. The droplets produced are usually
in the micrometre range and can be produced at rates of tens of
thousands per hour. Wrapped droplets in small channels also allow
fluid flows with no dispersion; therefore contamination will not be
left in the tube for the next droplet to pick up. In addition, when
such droplets are surrounded by an immiscible fluid this can pre-
vent contact between the surfaces of the channels and the sample
within the droplet, eliminating adverse effects due to the large sur-
face to volume ratios. The instrumentation developed in this paper
expands on the approach of using microfluidic droplets, acting as
distinct miniature reactors continuously flowing through the sys-
tem, from which it will be possible to quantify gene expression
levels in DNA samples. The instrument is a four-line system which
allows for a variation in experiments to be carried out in parallel
(Fig. 1). The entire process, from sample preparation to data acqui-
sition, is performed on one instrument and is automated to ensure

speed and consistency in measurement. As this platform is based
on a continuous flowing basis, a large number of reactions will be
generated with small reaction volumes leading to a fundamental

ary components and overall process flow. The main components of the instrument
ystem, a dual temperature thermal cycler, an optical detection platform and a data
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equirement to design a system that is capable of manipulating
uch small samples. Fluidic manipulation and monitoring tech-
iques that have been developed are presented showing the mixing
f individual droplets of DNA, reagents and Taq polymerase occur-
ing in a controlled micro-environment. The mechanisms for the
eneration of the micro-reactor droplets are also presented. The
ystem has been developed to be reusable without carryover con-
amination i.e. the unwanted transfer of molecular material from
ne reaction to another that may  ultimately lead to a false posi-
ive [31] by encapsulating the droplets by immiscible oil. The final
eaction size of the reaction droplet is approximately 300 nl. Ther-
al  cycling is performed in a flowing serpentine cycler which gives

uperior performance because of the relative size of the droplets
herefore resulting in more sensitive experiments. The inclusion of
uorescent probes in the PCR mix  permits the amplification process
o be monitored within individual droplets at specific locations. A
omprehensive data modelling system allows for the signals to be
nterpreted and expression ratios to be determined.

. System design and methodology

.1. Pumping system

Precise fluidic transport is essential to achieve successful con-
inuous flow PCR. The production of precise droplet sizes and
orrect dwell time of a droplet in a thermal zone is depend-
nt on the flow rate control. Fluidic transport is provided by an
ctive integrated method using micro-annular gear pumps (HNP
ikrosysteme MZR®-2905 series). The pumps provide a flow rate

y displacing fluid between and internal and external rotor. The
ain advantages of this device include high precision, low volume

osage, compact design and an integrated microcontroller. With
he ability to operate at a flow rate in the range of 0.003–18 ml/min
oupled with a low pulsation of <6%, the micro-annular pumps are
deal for the continuous, stable convection of droplets through the
ystem. It allows the combination of fluidic transport and modula-
ion to achieve active control of droplet generation and enables
ndependent control of droplet generation frequency by adjus-
ing the pumping frequency and droplet size by flow conditions
32]. There are four micro-pumps in the system, each one individ-
ally controlled at precise micro-litre flow rates and volumetric
isplacements. Flow rate control is achieved using a LabVIEW con-
rol algorithm. Manifolds are incorporated into the fluidic layout
o ensure pumping stability is maintained throughout the system.
he manifolds also ensure the prevention of air or any residual con-
ent from entering the pump and system at any stage. Two  way
nd three way valves (Lee Control Valves) in the pumping system
llow for precise control and high speed direction control of the
uid. The valves are simple in design yet allow for the rapid con-
rol of the oil through individual ports and pathways. Flow control
ensors (Sensiron ASL1600-10 and ASL1600-20) monitor the flow
ates between the pumps and the manifolds and relay real-time
ow rates to the central control system which in turn adjusts the
ump speeds to counteract peaks in flow rate and keep the system
verall flow steady and controlled. A priming system is also incor-
orated into the platform which allows for the entire purging of
he system at the beginning and end of each experiment remov-
ng any air bubbles or possible contamination for further tests. A
heathing system is also incorporated into the system which con-
inuously replenishes an oil supply that flows over the aspiration
ips in the dipping heads. This allows for the movement of the dip-
ing heads in air between the home position trays and the well

lates. This sheathing system also replenishes the oil in the well
lates and overlay of the sample. Priming of the system is depend-
nt on the reversal of two of the system pumps, one which draws
nd the other which forces the liquid through the system at an
on and Quantification 4 (2015) 22–32

increased velocity. A total system prime of the liquid bridge, ther-
mal  cycler and remaining components can be completed within
8 min. A filtered oil supply is located in a tank within a basement
compartment of the instrument alongside and waste oil recycling
tank. Each reservoir is 8.25 l in capacity which is equal to +150 h
of the instrument continuously running, highlighting an important
walk-away automation aspect.

2.2. Droplet generation

The first step in the microfluidic life cycle of a droplet is its pro-
duction. The majority of microfluidic droplet production is achieved
using either active or passive methods [31]. The active method for
generation of droplets involves the use of an external factor such as
an electric field for droplet generation. Two  techniques that fall in
this category are di-electrophoresis (DEP) [33] and electro-wetting
on dielectric (EWOD) [34,35]. A limitation of these two  techniques
is in the control of interfacial instabilities where the surface wett-
ability (contact angle) can be difficult to manipulate and control. In
passive methods, the droplet generation depends on the geometry
and dimensions of the device such as T-junctions and flow focus-
ing methods [36]. A uniform, evenly spaced, continuous stream of
droplets can be achieved by these methods. However, there are
many limitations with these methods such as droplet polydisper-
sity in droplet streams and flexibility in manipulation of droplets.
These boundaries confine the application of these methods to very
precise environments which have high shear rates for droplet pro-
duction. High flow rates can result in undesirable pressure drops in
a continuous flow system.

In the instrumentation outlined, micro-scale extruded
polytetrafluoroethylene (PTFE) capillary tubing (ID ∼ 152 �m,
OD ∼ 787 �m)  is integrated into dipping heads that are attached to
modular three-axis robotic stages (Festo Motor Controllers CMMS-
AS). The hydrophobic PTFE tubing allows for strong wetting of the
surface walls by the carrier fluid and also the internal tolerances
on the capillaries prevent the droplets from sticking to the walls
on imperfections as seen similar PCR designs [37]. Also, in previous
work on this type of PCR, cross-contamination between droplets
was attributed to droplet instability and the formation of small
satellite droplet [24] To inhibit this, when droplets are produced
they are transported in the micro-capillary tubing by the carrier
fluid where the interfacial properties of the carrier fluid coupled
with the constant flow of fluid into the system separating the
droplet trains means carry-over contamination risks are reduced
(Fig. 2). Also, due to the biphasic flow in the capillary, a liquid
film exists between the droplets and capillary wall. The oil film
prevents the aqueous droplets from wetting the wall of the tube,
preventing contamination of the flow conduit [38].

The dipping heads versatility allow for access to each individ-
ual well on a variety of plates including 384-microplates (Greiner
384 well plates, clear polystyrene wells flat bottom). Droplets are
created by moving the dipping heads from an oil overlay in the
microplate to the sample for a specific time. The sample is with-
drawn and the dipping head moves back to the oil overlay, creating
the droplet. On the sample/single tip side, four individual dipping
heads aspirate identical volumes of DNA sample while on the mul-
tilumen side, a bundle of four dipping heads aspirate the reagent
and Mastermix volume. This allows versatility in the instruments
robotic movements and allows the sample side to remain in one
well while the multilumen bundle head moves from well to well in
a second plate assaying for the genes of interest (GOIs). This pro-
cess can also be reversed where the multilumen head remains in

the well while the single tip side moves from well to well. The
sequence of movements is determined by individual experimen-
tal processes and desired qPCR analysis. The stages programmed
sequence allows dipping into the solutions and aspirate predefined
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Fig. 2. The system was  tested for crossover contamination interspersed dipping evaluation by alternating between NTC reactions (n = 65) and template nanodroplet reactions
(n  = 50) in single dipping mode demonstrated no cross contamination. NTCs contain the primers and mastermix but do not contain any template. The reporter dye (FAM)
fl ctions
s observ
c

q
b
r
r
h
n

d
r
e
h
b
t
e
t
c
w
e
d
t
b
t
b
T
c
m
s
i
m
D
c
d
o
t
p
l

uorescence at cycle 36 is highlighted on the left of the figure showing clear distin
ignal  intensity heat map (cycle vs. droplet number) are also shown. There is no 

onsistent for each of the reaction droplets.

uantities of DNA and reagents. The droplet volume is determined
y the dwell time of the dipping head and the volumetric flow
ate. Accurate and precise incremental dipping accounts for the
educed time the aspiration tip is in the sample due to the reduced
eight level of sample. The two phase nature of microfluidic flow
ecessitates a means of combining fluids.

To combine and mix  the sample with the reagents within one
roplet, which may  then be used as a microfluidic biochemical
eactor, liquid bridge dispensing that has been developed [39] is
xploited. A liquid bridge consists of an isothermal mass of liquid
eld by interfacial tension between two opposing capillaries. Liquid
ridge dispensers operate by continuously creating and rupturing
his bridge. The bridge comprises a first inlet port which is at the
nd of a capillary, two narrower inlet ports each perpendicular to
he first port, an outlet port which is at the end of a capillary and a
hamber for the carrier fluid (Fig. 3). Initially the system is primed
ith density-matched oil. The inlet and outlet ports are of diam-

ter 300 �m.  The chamber is ∼5 mm in diameter and ∼3 mm in
epth. The oil is density-matched with the reactor droplets such
hat a neutrally buoyant environment is created within the cham-
er [40]. Oil between the reactor droplets continuously replenishes
he oil in the chamber. This causes the droplets to assume a sta-
le capillary suspended spherical form upon entering the chamber.
he first and second droplets remain suspended at the end of the
apillary until the third droplet enters the system causing the for-
ation of an unstable funicular liquid bridge allowing the spherical

hape to quickly rupture and span the gap between the ports, form-
ng an axisymmetric liquid bridge. This method of periodic, stable

ixing allows for the creation of the micro-reactor droplets with
NA sample and reagents for functional experimentation. Highly
onsistent, low volume micro-reactors can be generated [41] and
roplet size can be changed as required. The process is continu-

us, allowing sample droplets to be carried uninterruptedly into
he reaction zone while new drops are aspirated from the sample
late. There are no consumable parts owed to the presence of a

iquid film wrapping and separating the droplets, eliminating the
 between positive reactions and NTCs. The amplification plot (Cq = 28 ± −0.7) and
able contamination between different droplets and furthermore amplification is

high cost per experiment associated with some commercial qPCR
technologies.

2.3. Thermal cycling device

A large body of research [17] has focused on developing faster
thermal cycling technologies for PCR. To carry out the PCR, thermal
control of the reaction droplet is a crucial step to maximise the full
efficiency of the amplification process. A non-uniform temperature
field may  lead to low amplification efficiency of nucleic acids and
even non-specific PCR products due to insufficient annealing tem-
perature of the PCR process [42]. The majority of microchip systems
utilise fabricated micro-, nano-, or picoliter reservoirs for conven-
tional thermocycling [43–46]. Some of the reported drawbacks of
on-chip amplification are difficulty in creating parallel reactions,
difficulty in adjusting the number of cycles once design is complete,
and the high cost of such devices [47]. Furthermore, the number of
micro-reactors is fixed, reducing experimental flexibility and lim-
iting the maximum sample volume that can be processed. An inter-
esting principle which has been exploited is the dynamic reactor,
where a continuous flow of samples and reagents is passed through
three zones, which are kept at constant temperatures optimised for
denaturation, annealing, and elongation of the DNA fragments. The
principle was  first described by Nakano et al. [48] where a Teflon
capillary was routed through three constant temperature baths to
provide 30 cycle amplification. The four line continuous flow ther-
mal  cycler design outlined in this paper takes from that principle
and is characterised by two  independent temperature zones with
no cyclic hold times inspired in part by the observation that much of
the canonical 20–40 cycle denature (90–98 ◦C), anneal (50–65 ◦C),
and elongation (70–80 ◦C) temperature sequence can be abbrevi-
ated without sacrificing performance [42].
The AB 7900HT Fast Real-Time PCR System [49], a PCR platform
manufactured by Applied Biosystems, was used as a benchmark
instrument. The AB 7900HT specifies a temperature uniformity
of ±0.5 ◦C and accuracy of ±0.25 ◦C. This temperature control
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ig. 3. Liquid bridge design. The illustration shows the internal modules of the liqui
hemistries along with the TC outlet capillary where the combined micro-reactor d

as replicated on the instrument design as Applied Biosystems
hemistries and protocols are used. Two thermally insulated blocks
re arranged in parallel and are separated by an air gap of approxi-
ately 1 mm to reduce heat transfer convection rates between the

wo surfaces. The static blocks/heaters are divided into two thermal
ones, a 95 ◦C denaturisation region and a 60 ◦C annealing region
ith incorporated ∼1 mm serpentine channels (Fig. 4). Heating ele-
ents (Minco Flexible ThermofoilTM heaters) are applied to the

locks which allow for heating from steady state to elevated control
emperature in order to maximise test speed and throughput. These
hin, flexible components consist of an etched-foil resistive heat-
ng element laminated between layers of flexible insulation. The
wo temperature zones are thermally insulated to reduce temper-
ture fluctuations along the length and because this gives superior
emperature control due to the reduced heat dissipation capacity.
he micro-droplet enters the thermal cycling system in a single
apillary and travel through the 95 ◦C section for initial denatur-

sation of 10 min  prior to PCR cycling. Similar designs have been
emonstrated in literature where sample is flowed through fused
ilica tubing which is in turn wound helically around a cylindri-
al device subdivided into discretely heated, constant temperature

ig. 4. Thermal cycler image showing individual components and heating elements. De
ndicating that employing a highly heat conducting material and efficient thermal insu
onveyed from the inlet through the preheat channel before undergoing one cycle of PCR
hermal  zones. Droplets spend ∼15 s in the 95 ◦C denaturisation zone and ∼45 s in the 

aqman  chemistry which eliminates the need for a 72 ◦C extension zone as is typical with
ge including the bridge housing and the individual pick-up lines for the sample and
 is conveyed to the serpentine thermal cycler.

segments [50] and which was later expanded upon by others [51]
with the integration of analysis systems to detect amplification. In
the system outlined, the micro-reactor droplet is conveyed through
the two zones and follows a serpentine shape which provides for
one cycle of PCR for each length of travel along the serpentine
design. Since the blocks are isothermal, there is no unnecessary
ramping time as seen with most PCR platforms that operate by
repeatedly heating and cooling blocks. The elimination of unneces-
sary ramping time has the potential of reducing the overall thermal
cycling times compared to conventional thermal cyclers. In total,
the sample undergoes 40 thermal cycles before exiting the thermal
cycler for sample collection. The time for each cycle is approxi-
mately 1 min  (15 s denaturisation/45 s annealing) and determined
by the internal diameter of the tubing (Zeus Inc.: ID ∼ 584 �m,
OD ∼ 1040 �m)  and the flow rate (∼11 �l/min) of the PCR through
the system. The serpentine channel length ratio was designed to
yield a dwell time duration ratio of 1:3 for denaturation and anneal-

ing. From entering the system to exit, the droplet spends a total
of 48 min  in the thermal cycler. Thermocouple readers providing
a feedback loop to a LabVIEW control program maintain a steady
temperature profile. Deviation in temperature over the surface of a

viation in temperature over the surface of a heating block has not been observed,
lation provides a homogenous temperature over the block. The reactor droplet is

 upon travel back through tubing (serpentine shape) as it passes through the two
60 ◦C annealing zone. The instrument platform is optimised for Life Technologies

 conventional thermal cyclers. The droplets then exit at the outlet.
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Fig. 5. Illustration of the optical detection platform showing the individual components designed for optimum fluorescence analysis of each micro-droplet as it is conveyed
t re the
l een.
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hrough the system. The design and orientation of the fibre bundle can be seen whe
ight  source, fibre splitter, tiled array and high speed detection camera can also be s

eating block has not been observed and fluctuations are monitored
y four integrated thermocouple wires (k-type) along the heat-

ng blocks. This indicates that employing a high heat conducting
aterial and efficient thermal insulation provides a homogenous

emperature over the block. The droplets are fluorescently interro-
ated on each cycle by the optical detection platform.

.4. Optical detection platform

The bio-fluorescence detection platform (Fig. 5) analyses the
icrofluidic reactor droplets with superior accuracy, sensitivity

nd efficiency for the qPCR in comparison with current method-
logies. In this system, qPCR is carried out in a thermal cycler with

he capacity to illuminate each sample with a beam of light of a
pecified wavelength and detect the fluorescence emitted by the
xcited fluorochrome (Table 1).

able 1
pectral intensities of the three fluorophores used on the instrument for calibration
nd  normalisation during experiments.

Dye Excitation maximum (N m)  Excitation minimum (N m)

FAM 494 518
VIC 538 552
ROX 587 607
 illumination lights are radially positioned around a central detection core. The LED

The detection system is capable of simultaneously detecting,
tracking, exciting and detecting three different fluorophores from
each individual droplet. To do this, back reflectance probes are
integrated into the thermal cycler at 40 locations throughout one
length of travel of the capillary through the unit. Each probe, along
the 40 points, consists of seven highly sensitive optical fibre cores
each measuring 200 �m in diameter. To illuminate the droplet as
it passes the probe, six fibre cores are arranged in a circular ori-
entation to fully disperse the light throughout the droplet ensuring
maximum illumination. A blue light-emitted diodes (LED) (470 nm)
is implemented as an excitation source and this emits at a specific
wavelength to excite the fluorochrome being used. The central sin-
gle core, also 200 �m in diameter, detects the fluorescence from the
each droplet as it passes the fibre. In total, forty excitation/detection
fibre combinations are distribution per line and arrayed into a
coherent bundle to a fibre splitter. Fluorescence emission is then
transmitted back to a tiled array (Fig. 6) into which the fibres are
positioned in a matrix orientation where it is analysed by three
high-resolution digital cameras (Hamamatsu Digital CCD, ORCA-
03G) which each have a resolution of 1.37 million pixels and are
capable of capturing at a frame rate of 43 frames/s. The cameras
are calibrated to analyse individual fluorescence using a signal

intensity mapping system (set to detect 6-FAM, VIC and ROX dyes)
enabling multiplexed analysis for the targets within the sample.
Output signals are recorded and processed with a computer using
in-house written software described in the next section.
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uorescence from the dyes. The application of masks over the matrix of fibres
etermines the focus of the cameras ensuring precise fluorophore variations.

.5. Data analysis modelling

Unlike end point PCR, real time PCR allows quantification eval-
ation at any point in the amplification process. To quantify the
uorescent intensity signal from the reaction relayed to the tiled
rray, the three detection cameras are calibrated to detect at a set
uorescence for each of the dyes in the reaction. Modelling soft-
are analyses the raw fluorescence (Rn) from the 6-FAM reporter

nd this is then normalised against the ROX reference dye. The flu-
rescence produced by the sample which is detected by the system
s proportional to the amount of initial targets for the amplification
eaction [52]. The passive ROX dye is found in mastermixes and acts
s an internal reference to normalise fluorescence signals. Normal-
sation is required to correct for fluctuations from droplet to droplet
aused by changes in the concentration of the reaction or overall
olume. Also the ROX signal normalisation corrects variations in
ptical detection scanning. The resulting signal (�Rn) is plotted
gainst the number of cycles on a logarithmic scale. A threshold
or fluorescent detection is set above the background levels and
he number of cycles necessary for the fluorescence to exceed the
ackground level is called the Ct (threshold cycle) or, as described

n the MIQE guidelines [53], the Cq (quantification cycle). The Cq
s determined from a log-linear plot of PCR signal versus the cycle
umber. The background levels are normally determined from the
verage of the first no-template-control (NTC) droplet in a run. This
s subtracted from the subsequent ROX normalised value. Once the
ignal passes the Cq then, in theory, the sequence of the DNA target
oubles every cycle but is dependent on the efficiency of amplifi-
ation. For the experiment outlined in this paper, threshold values
f 0.1 and 0.2 were analysed. For studies of groups of genes car-
ied out on the platform, the differences in gene expression levels
re calculated using the 2−��Cq method where the amount of tar-
et is normalised to the endogenous control and relative to the
alibrator.

. Device characterisation

The main components for each of the PCRs are the Taqman
ene Expression Master Mix  and the Taqman 20× Gene Expres-

ion Assays (Life Technologies, Carlsbad, CA, USA). The Master
ix  contains NTPs, magnesium chloride, ROX passive reference

ye and buffer. The gene expression assays contained the forward
nd reverse primers and the sequence specific probes. Microplates
on and Quantification 4 (2015) 22–32

(Greiner Bio 384-well flat clear bottom polystyrene) which have
volumetric capacity of 112 �l were used. To permit continuous
sampling of multiple wells without air ingress, the plates were
modified by milling out a section which reduced the well capacity
to approximately 40 �l. With this, the dipping head can withdraw
sample from one well, lift out of the well to an oil overlay and
access another well. cDNA dilutions were prepared and then over-
laid with the silicone-based oil in the remaining well volume that
prevents the sample from being environmentally contaminated
and also act as a reservoir for fluid circulation during experimen-
tation. This continuous oil flow into the system also prevents the
unwanted introduction of disturbing air bubbles into the system.
The MasterMix and Assay combination were prepared in a sec-
ond microplate and are placed on the instrument plate holding
carriage. Volumes can be modified to suit individual experiments
depending on genetic focus and volumes available. The dead vol-
ume or volume that cannot be aspirated from the bottom of the
well, for each experiment is 10 �l. This results in a usable vol-
ume  of 10 �l (10,000 nl) available on the cDNA sample side and
20 �l (20,000 nl) available on the assay-mastermix side. Using the
volumes mentioned allows for 100 replicate experiments to be
carried out on a single gene-assay expression analysis. This is
a significant reduction in comparison to the commercial instru-
ment (AB 7900 HT) volume where 50 �l cDNA sample, 25 �l of
assay, 250 �l of mastermix would be required for approximately
100 reactions. For the experiments in this paper, 20 �l combined
volume of cDNA sample and H2O (6 �l:14 �l) and 30 �l com-
bination of assay-mastermix-H2O (2.25 nl, 22.5 nl, 5.25 nl) were
prepared. The instrument dipping heads move into position and
the sample and reagent aspirating tips, initially located in the oil
reservoir at the upper part of the plate, are moved vertically to
the bottom of the defined well(s), n, and volumes of 35 nl/100 nl
of sample/H2O and 15 nl/150 nl of assay/Mastermix combination
are aspirated into the system. Replicates are performed and the
tips are then moved vertically from the well plate and displaced
laterally to the next sample or assay well, n + 1. Meanwhile, the
individual droplets combine at the liquid bridge to form a 300 nl
reaction before being conveyed to the heating section for thermal
cycling and optical detection system for analysis. Droplets are con-
tinuously being generated and combined into individual reactions
which emphasis the high throughput aspect of the system. Also
included in each run are no template controls (NTCs) at the begin-
ning and end of each of the replicates to ensure there is no system
contamination.

4. Results

The PCR mixtures used Taqman® assays. Taqman® assays are
probe based assays, permitting sequence specific fluorescence
detection. Firstly, to demonstrate the developed instrumentation
and limits of overall system performance, an initial evaluation
was carried out to determine the expression of a candidate inter-
nal control gene at various concentrations. Complimentary DNA
(cDNA) synthesised (using kit manufacturer protocols) [54] from a
colon carcinoma epithelial cell (HCT116) population was assessed
for �2-Microglobulin (�2M)  (Reference Sequence: NM 004048.2)
expression. �2M is an endogenous control assay which allows rel-
ative gene expression quantification in cDNA samples when used
with other gene expression assays. Expression data from genes of
interest are normalised against reference genes to correct for the
initial amount of starting material in order to determine expression

differences with disease or in response to treatment [55]. However,
reference gene expression may  vary depending upon the cell type
analysed and experimental conditions [56]. To accurately deter-
mine the efficiency of a PCR in the system, a four/five log dilution
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Fig. 7. Real-time PCR standard curves: the real time PCR standard curve is graphically represented as a semi-log regression line plot of Cq value vs. log of input nucleic acid.

Table 2
Ct values for RACK1 and PGK1 expression in HCT116 colon cancer cell line cDNA. Averages of the replicates (AB7900HT three-well average and GEI triplicate average across
the  four instrument lines) were used when comparing instruments.

Instrument

AB7900HT GEI

� (3-well) Line 1 Line 2 Line 3 Line 4 � (4 lines) � (4 lines) CV on Ct (%)

RACK1 18.56 19.8 20.1 19.2 19.5 19.65 0.3354 1.71
PGK1 20.61 21.8 22 21.8 21.5 21.77 0.1785 0.82

Fig. 8. HCT116 cDNA vs. �2M expression tests. (A) Graphical representation of data across one instrument test line for four dilutions repeated three times. (B) Repeated serial
dilution  using matching sample and reagents across the four lines on instrument showing minimal line to line variance. The four lines allows for a variation of experiments
to  be carried out in parallel. The instrumentation can be up scaled or downscaled to modify the number of lines depending on individual experimental requirements.
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Fig. 9. Reproducibility tests performed on instrument showing Cq values generated for �2M expression serial dilution in a HCT116 colon cancer cell line. The experiment
was  repeated nine times (experiments 1–9) on the GEI and the Cq values generated show concordance over the nine tests. Experiment 3 (GEI) produced a reduced value due
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o  an incorrect setting being applied to a camera in the optical detection platform. 

DNA,  assays and mastermix ran in parallel on the AB7900HT. The results again sho

eries was performed. A slope of 3.32 ± 10% reflects an efficiency of
00% ± 10%. A PCR with lower efficiency will have lower sensitivity.
ere, serial dilutions were in 10-fold reductions from 1.25 ng/�l

o 0.00125 ng/�l. Cq values for �2M which are obtained corre-
ponded well with the data from the commercial instrumentation
Fig. 7). The value for two experiments can be seen to be +5% of
.32. Another critical parameter that was assessed is the R2 values
enerated for PCR efficiency. R2 values indicate good PCR repro-
ucibility in both experiments. When the R2 is 1, the value of Y (Cq)
an be used to accurately predict the value of X. An R2 value = >0.99
rovides good confidence in correlating two values.

Further serial dilution tests assessing possible line to line
ariance of the developed instrumentation in comparison to the
B7900HT wells are shown (Fig. 8). Experimental precision was
easured from the standard deviation of the results generated

rom the instrument. To properly evaluate the reproducibility of
he serial dilution experiment, it was repeated nine times using
he same cDNA, reagents and mastermix on both instruments.
esults for a series of experimental tests run on the instrument
ith the same procedural set up are shown in Fig. 9. Reproducible

mplification, no cross-contamination and detection of low con-
entrations were demonstrated on numerous consecutive sample
rops. Amplification curves for this experiment are found in Sup-
lementary Information 1.

Subsequent experiments targeted the Receptor for Activated C
inase 1 (RACK1) (Reference Sequence: NM 006098.4) and Phos-
hoglycerate Kinase 1 (PGK1) (Reference Sequence: NM 000291.3)
enes, again using cDNA synthesised from the same colon carci-
oma cell line (HCT116) as the template and Taqman® chemistry

or detection. RACK 1 was chosen for this experiment because it has
een shown [57] to be expressed intensely in colon cancer cells and
GK1 because of its stability showing no or only minimal variations
n expression levels in similar experiments [58]. Results compar-
ng the expression of these genes, compared to concurrent tests
n the AB7900HT using identical experimental preparation condi-
ions, can be seen in Table 2. The mean (�), standard deviation (�)

nd coefficient of variation (CV) across 4 lines are also shown. The
loseness of data points to the mean affect the standard deviation.
xperimental amplification plots are available in Supplementary
nformation 2 and 3.
umulative dataset for the nine tests can be compared to three tests using the same
d concordance and minimal differences in Cq values.

5. Discussion

Gene expression profiling using microfluidic technologies
are and innovative and promising area for molecular research.
Microfluidic tools are being increasingly used in major biological
studies for analysing a large number of samples simultaneously
while discreet controls within the system allow for a stable micro-
environmental condition to be maintained throughout the process.
Along with allowing sensitive and robust analysis at lower cost,
microfluidics also offers several superior tools with regard data
output rates. Standard current throughput for the instrument at
25 second dips over 4 lines equates to 576 reactions per hour.
For a standard operator 8 h working day, this will allow a sin-
gle operator to produce data for 4608 reactions. This amount of
reactions is equal to 12 standard 384 plates at drastically less
cost in a shorter time frame. Reducing the time between dips will
increase the overall instrument throughput. For the study pre-
sented, data provides good accuracy and repeatability and shows
a clear, concise fold change over the 4 order of logs for the �2M
amplification.

Ultimately, this technology may  represent a useful tool for
carrying out large scale gene expression profiling of samples of var-
ious carcinomas and pathological diseases. Each sample could be
assayed for gene expression panels specific to the carcinoma and
statistical analysis of combined patient +/ expression data could
output a small set of genes for the purpose of developing robust
diagnostic and prognostic tools such as prediction of the diagnostic
category of patients or the estimation of survival. In comparison to
the AB7900HT, the instrumentation described has distinct advan-
tages. DNA sample volumes required are significantly reduced
which is becoming an increasingly important factor in molecular
diagnostics due to the shortage of high-quality tissue samples. Also
each reactor droplet uses less reagents and master mix leading to
less overall cost per analysis and allows much more experiments
to be carried out per batch order (Table 3).

Additionally experimental times are much lower and the instru-

ment can carry out many more experimentation reactions in
comparison to a standard well-format run in the same time frame.
The advantages of microfluidics for gene expression analysis are
obvious. Compared with typical pipette-based lab-scale equipment
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Table  3
Typical volumetric reductions for reactions are shown with a focus on total volume
reaction, sample, reagent, mastermix and water use for both instruments.

GEI AB7900HT Change per reaction

Reaction 300 nL 5 �L (5000 nL) −4700 nL
Sample 35 nL 500 nL −465 nL
Assay 15 nL 250 nL −235 nL
MasterMix 150 nL 2500 nL −2350 nL
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http://dx.doi.org/10.1021/ac0204146.
H2O 100 nL 1750 nL −1650 nL

hat use multi-microlitre to millilitre volumes of fluid [59], the
icrofluidic instrument described is optimised for nanoliter vol-

mes. In addition, flow within the microtube is laminar rather
han turbulent due to its size and thus favours a highly predictable
nd controllable flow. The droplets can be moved, mixed, moni-
ored and then disposed of with the minimum risk of carry over
ontamination. These are valuable attributes for a high through-
ut genetic diagnostics system, where the screening of hundreds
f discrete samples is required. Overall the system is an example
f a droplet based platform that has efficiently integrated large
umbers of functional components within a single instrument to
erform complex molecular diagnostic experiments.

. Conclusions

The use of microfluidics for genetic analysis and gene expres-
ion studies has advanced substantially in recent years. Here,

 microfluidic gene expression instrument that performs real-
ime qPCR in a continuous flowing process and demonstrates
he highest quality results using nanoliter volumes is described.
he technology produces more data at substantially less cost in

 shorter time frame than comparable market instrumentation.
lso, in comparison to microarrays and lab-on-chip technolo-
ies that only provide a single function, this microfluidic system
rovides an integrated platform that has all the necessary com-
onents to analyse the gene expression levels from sample to
esults. A variety of experimental processes can be performed
hich benefit from the high level of control over the droplets
ithin the microfluidic system and the ability to perform multiple

eactions using a variety of assays and reagents in a continuous,
ontaminant free environment using interspersed dipping pro-
rammes. Using small volumes enhances the overall instrument
ensitivity and expedites the assay performance while indepen-
ent robust micro-droplets conveyed by precise fluidic control
revent sample to sample contamination or sample dilution.
utomated, continuous instrument control reduces contaminate
isks and experimental times and significantly reduces overall
abour and process costs. In conclusion, droplet based microfluidic
echnology represents a promising tool that is likely to trans-
orm the way  scientists address large scale experimentation. It
s hoped that the instrumentation outlined will assist in the
evelopment of further microliter and nanoliter microfluidic plat-
orms which will progress molecular diagnostic advances in the
uture.
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