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Abstract

Real-time RT-PCR has been frequently used in quantitative research in molecular biology and bioinformatics. It provides remarkably useful
technology to assess expression of genes. Although mathematical models for gene amplification process have been studied, statistical models and
methods for data analysis in real-time RT-PCR have received little attention. In this paper, we briefly introduce current mathematical models, and
study statistical models for real-time RT-PCR data. We propose a generalized estimation equations (GEE) model that properly reflects the structure
of repeated data in RT-PCR experiments for both cross-sectional and longitudinal data. The GEE model takes the correlation between observations
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ithin the same subjects into consideration, and prevents from producing false positives or false negatives. We further demonstrate
ctual real-time RT-PCR data that different statistical models yield different estimations of fold change and confidence interval. The SA

or data analysis using the GEE model is provided to facilitate easy computation for non-statistical professionals.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Real-time reverse-transcript (RT) polymerase chain reaction
PCR) has gained increasing popularity in quantitative research
f molecular biology and bioinformatics(Walker, 2002). It has
ow become a standard technique for assessing expression of
enes that potentially have impact on disease pathology or health
rognosis. In RT-PCR experiments, total RNA is extracted from

issues or cells in response to different treatments (e.g. vari-
us levels of irradiation, dietary nutrient intake or therapeutic
gents), or different physiological and pathological conditions
e.g. age, pregnancy, lactation, and tumorigenesis), and is then
everse transcribed and amplified through DNA polymerase. In
he process of RT-PCR analysis, specific primers are used to am-
lify target genes through numerous cycles, where each cycle
onsists of three steps, denaturation, annealing, and extension.
uring the amplification process, one copy of the target gene is
oubled and then quadrupled, and is amplified exponentially to
n copies aftern cycles.
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In real-time RT-PCR experiments, fluorescence techniq
such as Taqman, SYBR green and Beacons, are used to de
amplification of target genes and to assess their expressio
els. A fluorescence threshold (�Rn) is usually predetermine
for an experiment. A cycle threshold (CT), the value of cycl
at which the fluorescence achieves the predetermined thre
(�Rn), can then be determined for each target gene thr
monitoring the fluorescence in individual PCR wells or tu
where target genes are amplified in separate wells or tube
CT values of target genes are recorded and output with the
puter system connected to the PCR. Since the cycle thre
and the logarithm of the input expression level of one spe
gene form an inverse linear relationship, a unique line is d
mined for each target gene as shown inFig. 1. Different gene
may have different slopes. Such a linear relationship ca
used to determine the level of absolute gene expression
input RNA sample if the slope is known or can be calcula
(Pfaffl, 2001). However, the slope also depends on experim
tal factors which may vary from one experiment to anothe
an RT-PCR experiment, usually theCT value corresponding
the threshold (�Rn) is recorded for each target gene, whic
not enough to determine the slope and thus the level of abs
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Fig. 1. The inverse linear relationship between cycle threshold (CT) and the
logarithm of input quantity of target gene demonstrated with hypothetical data
The horizontal axis is plotted in logarithm scale.

gene expression in the input RNA sample. Fortunately, the rel
ative expression of target genes in terms of the expression rati
can be determined on the basis ofCT values under certain as-
sumptions, and the differentiation of gene expressions and th
fold change between control and treatment groups can be furthe
determined. To validate theCT readings of RT-PCR, an endoge-
nous reference gene is usually used in the experiment to adju
for any potential unaccounted variation or bias.

Since RT-PCR is used frequently in quantitative research
to assess fold changes of gene expression, statistical metho
of computing such fold changes play a critical role to en-
sure the validity of results. Very often biologists extract re-
peated samples from the same tissue to ensure protocol com
pliance or experimental consistency. However, statistical mod
els or methods that fail to reflect such a repeated sample struc
ture result in misleading conclusions and may potentially pro-
duce either false positives or false negatives. In this article, we
briefly discuss current mathematical models used in RT-PCR
studies. We then propose a generalized estimating equation
(GEE) model to analyze RT-PCR data, and demonstrate th
practical usefulness of the GEE method using a real data se
collected from an actual RT-PCR experiment. We further pro-
vide comparison of the GEE model with a few other models to
compute fold changes of genes. Finally we conclude that the
GEE model properly reflects the repeated sample structure e
ther in cross-sectional or longitudinal studies and yields correc
r

2. Materials and methods

2.1. RT-PCR data

We recently conducted a nutritional study involving dietary
supplementation of arginine [1.51% arginine–HCl or 2.55% ala-
nine (isonitrogenous control) in drinking water] to 9-week-old
male Zucker diabetic fatty (ZDF) rats(Fu et al., 2005). At the
end of a 10-week supplementation period, various tissues were
isolated from control and arginine-treated 19-week-old ZDF
rats. Statistical analysis indicated that abdominal and epididy-
mal adipose tissues were 44.5% and 24.7% lower (P < 0.01)
in arginine-treated ZDF rats when compared with control ZDF
rats. The weights of all non-fat tissues (including skeletal mus-
cle, liver, heart, kidneys and brain) did not differ (P > 0.05)
between control and arginine-supplemented ZDF rats. In search
for genes that are differentially expressed and potentially re-
sponsible for the difference in abdominal fat mass, a microar-
ray study was conducted to identify the differentially expressed
genes in the two groups of ZDF rats, followed by an RT-PCR
experiment to confirm the findings of the microarray study. For
the RT-PCR study, total RNA samples were extracted from six
study rats (three arginine-treated rats and three control rats), us-
ing TRIzol reagent (Life Technologies, Gaithersburg, MD). To
achieve accurate reading, two repeated samples from each rat tis-
sue were subjected to RT-PCR analysis, using the SYBR Green
m plied
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ethod and the Amp 5700 Sequence Detection System (Ap
iosystems, Foster City, CA).Table 1lists theCT readings o

he samples by target genes. Carnitine palmitoyltransfer
CPT-2) was used as an endogenous reference gene and
hange is thus set at one.

.2. Mathematical models for RT-PCR

Mathematical models for the amplification of DNA s
uences in RT-PCR are based on the following considera
NA sequences are amplified in RT-PCR through DNA p
erase. During the amplification process, a copy of target
oubles in one cycle, and then quadruples in the next c
herefore, the amplification is in the power of 2, namely ex
ential amplification. An equation describes this process is

n = Y02n,

hereY0 is the initial expression level of a target gene, andYn is
he expression level of the gene afterncycles. Because the amp
cation in an experiment is subject to variations in experime
onditions and may not be 100% efficient and the amplifica
rocess may not end with an exact number of cycles, the a
quation may be written as

t = Y0(1 + e)t ,

heret is the duration of the amplification process in continu
umber of cycles, ande is the efficiency, which usually rang
etween 0 (completely inefficient) and 1 (fully efficient). T
fficiencye may depend on many experimental factors, suc
rimer concentration, buffer solutions, the fluorescence d

ion system, and other unknown factors, which may vary
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Table 1
CT readings of genes from RT-PCR analysis of ZDF rat abdominal adipose tissue

Treatmenta Rat no Sample CPT-2 AMPK Calcin HO-3 ODC NOS-I PGC-1�

Ala 1 1 18.67 22.37 17.62 27.45 17.26 31.72 24.15
Ala 1 2 18.62 21.98 17.49 27.39 16.95 32.96 24.19
Ala 2 1 18.12 20.14 17.17 25.77 17.36 –b 22.52
Ala 2 2 17.78 20.26 17.35 25.90 17.31 –b 22.35
Ala 3 1 18.02 21.24 17.12 26.23 17.33 29.56 24.24
Ala 3 2 18.32 21.60 17.36 26.28 17.42 28.86 24.36

Arg 4 1 19.36 22.04 18.02 24.16 17.99 31.42 21.56
Arg 4 2 19.36 21.16 18.17 23.77 17.54 31.18 21.36
Arg 5 1 18.59 21.12 18.12 24.03 18.11 30.55 21.31
Arg 5 2 18.82 21.40 18.13 23.89 17.94 31.13 21.34
Arg 6 1 18.95 21.23 17.38 23.32 17.77 28.57 21.43
Arg 6 2 18.76 21.24 17.56 23.14 17.74 28.33 21.51

CPT-2, carnitine palmitoyltrrasferase; AMPK, AMP-activated protein kinase; Calcin, calcineurin; HO-3, heme oxygenase-3; ODC, ornithine decarboxylase; NOS-I,
nitric oxide synthase-I; PGC-1�: PPAR� coactivator-1�.

a Arg, arginine treatment group; Ala, alanine control group.
b Missing data.

experiments. Thus, it is important to have an endogenous gene
to serve as an internal reference for ensuring the validity of RT-
PCR results. Presumably, the less the endogenous gene varies
with the study treatment, the better the experimental outcome.

Assume the predetermined threshold for the fluorescence
level isYT. For the target genex under treatment, we have the
following equation at the thresholdCT:

YT,x = Y0,x(1 + ex)CT,x . (1)

Similarly for the endogenous reference geneR:

YT,R = Y0,R(1 + eR)CT,R . (2)

In the same way, we have for the target genex under control:

Y∗
T,x = Y∗

0,x(1 + ex)C
∗
T,x , (3)

and for the endogenous reference geneR under control:

Y∗
T,R = Y∗

0,R(1 + eR)C
∗
T,R . (4)

The efficienciesex andeR remain the same for both treatment
and control groups. Taking the ratio of Eqs.(1) to (3) and the
ratio of (2) to (4) yields:

ZT,x = Z0,x(1 + ex)CT,x−C∗
T,x (5)

and
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model:

Z0 = K(1 + e)−�CT (7)

with �CT = CT,x − C∗
T,x and�CT = CT,R − C∗

T,R for target
and reference genes, respectively.K is a constant and remains
invariant with respect to genes, but may vary from one experi-
ment to another. Thus, if full efficiency is assumed withe = 1
as in the User Bulletin # 2 for ABI Prism 7700 Sequence De-
tection System (Applied Biosystems Inc., Foster City, CA), the
fold change of the target gene expression between treatment and
control is calculated with:

2−��CT , (8)

where ��CT = (CT,x − C∗
T,x) − (CT,R − C∗

T,R) = (CT,x −
CT,R) − (C∗

T,x − C∗
T,R). The term��CT measures the relative

change of expression of genex from treatment to control
compared to the reference geneR.

2.3. Statistical models and methods

Although calculation of the relative change��CT and the
fold change in Eq.(8) is straightforward for many target genes,
estimation of these quantities and standard errors depends on
statistical models and may vary largely. So far, we are not aware
of any statistical models or methods published in peer-reviewed
journals for the estimation of the change (��C ) and its stan-
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T,R = Z0,R(1 + eR)CT,R−C∗
T,R , (6)

hereZT,x andZ0,x are the ratios ofYT,x toY∗
T,x andY0,x toY∗

0,x,
espectively. Similarly,ZT,R andZ0,R are the ratios ofYT,R to
∗
T,R andY0,R to Y∗

0,R, respectively. The model byPfaffl (2001)
an thus be derived with Eq.(5) and (6) by settingEtarget=
+ ex andEref = 1 + eR.
If only theCT values of the target and reference genes a

redetermined threshold are recorded and no other inform
s available, the efficienciesex and eR cannot be determine
nd thus assumptions are needed in order to calculate th
hanges of genes. Under the assumption of equal efficien
oth target and reference genes, i.e.ex = eR = e, we have th
n

ld
r

T
ard error. The method for calculating the standard error o

old change provided in the User Bulletin #2 (Applied Bios
ems Inc.) is based on an incorrect formula on the coeffi
f variation for a ratio of two random variables (page 34

he User Bulletin,Applied Biosystems Inc., 1997). We compare
hree simple statistical models for RT-PCR data, the mode
raging repeated samples, the independent sample mod

he GEE model, with the above data set on gene express
bdominal adipose tissue of ZDF rats. We demonstrate th
iven readings ofCT values, different statistical models lead
ifferent estimations, and improper statistical models tha

o reflect the structure of repeated data may potentially le
alse positives or false negatives. We conclude that the



24 W.J. Fu et al. / Computational Biology and Chemistry 30 (2006) 21–26

model reflects the repeated sample structure either in cross-
sectional or longitudinal RT-PCR data and thus leads to correct
estimation.

2.4. Generalized estimating equations model

Although RT-PCR data are usually obtained from cross-
sectional studies (i.e. experimental tissues obtained at the same
time point), longitudinal studies using microarrays and other
technologies become more and more popular(Zhu and Hero,
2005). It is known that data collected from the same subjects
either repeatedly in cross-sectional experiments or in longitu-
dinal experiments are correlated. Statistical models that fail to
address such a structure of repeated data yield incorrect con-
clusion.Liang and Zeger (1986)proposed generalized estimat-
ing equations (GEE) model to incorporate correlation structure
into the model by specifying a working correlation structure be-
tween observations of the same subjects. One advantage of this
approach is that although the working correlation structure may
be specified in many different ways, the parameter estimations
obtained from such a model are consistent. That means the GEE
model results in correct estimation of the parameters even with
incorrect specification of correlation structure. We now briefly
introduce the GEE model for correlated observations. More de-
tails can be found in the original paper byLiang and Zeger
(
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2.5.1. Model 1: simple model averaging repeated sample
readings

Since two repeated samples were drawn from the same animal
fat tissue, averaging theCT readings of the two repeated samples
achieved accuracy inCT values for each rat tissue. Further anal-
ysis was thus based on the averaged readings. Although such
an approach improved accuracy for the reading of each animal
tissue, information is lost by averaging out the raw data within
each animal, resulting in a smaller sample size and larger vari-
ability. The larger variability led to larger standard errors and
larger confidence intervals of the change in expression levels.
Thus, this method is not preferred unless the experiment is not
carefully designed and has largely unequal numbers of repeated
samples for different animals.

2.5.2. Model 2: ANOVA model assuming independent
samples

Although it is known that repeated samples from the same rat
tissue are correlated, such correlation may often be overlooked in
practical data analysis by non-statistical professionals. A model
that treats all samples independent and ignores such a correlation
is expected to yield different results. This model regarded all six
samples in each treatment group as independent samples, and
the sample size was thus incorrectly considered to be 12 for the
two treatment groups although the two repeated samples from
the same animal tissue were highly correlated. The effect of the
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1986).
Assume that a longitudinal study hasK subjects. Each subje

= 1, . . . , K hasnk observationsYki with i = 1, . . . , nk with
orresponding covariate representing demographic and cl
onditionsxkj, j = 1, . . . , p. If the investigators are mainly i
erested in how the response variableYki varies with the covar
tes,Liang and Zeger (1986)proposed the following GEE mod
ased on marginal distributionf (yki) = exp[{ykiθki − b(θki) +
(Yki)}φ].

K

k=1

DkV
−1
k Sk = 0, (9)

hereVk = A
1/2
k R(α)A1/2

k /φ is the working covariance m
rix, Dk = d{b′

k(θ)}/dβ = Ak∆kXk, ∆k = diag(dθki/dηki), and

k = yk − b′
k(θ). The GEE estimator̂β is consistent, i.e. the e

imation converges to true parameter value as sample sK
ncreases to sufficiently large or infinity.

The GEE model was developed initially for longitudinal st
es where multiple observations along time were taken from
ubject(Liang and Zeger, 1986). The GEE model can also
pplied to clustered data where correlated observations m
e ordered in time or other factors, such as survey data w
ousehold. The GEE model can be run with the SAS GENM
rocedure as shown in theAppendix A.

.5. Comparison of statistical models and computational
ethods

We fit three statistical models to the ZDF rat RT-PCR da
able 1, and compare the results.
l

h

ot

ndogenous reference gene CPT-2 was adjusted by subtr
heCT readings of CPT-2 from those of the target genes.
hat the adjustment of the reference gene CPT-2 by incorpo
ts CT reading as a model covariate does not comply with

athematical models(5) and (6)because this adjustment alm
urely yields a parameter estimate for the effect of CPT-2
qual to one, which makes the model adjustment invalid.

.5.3. Model 3: GEE model accounting for correlation
etween repeated samples

To account for the correlation between repeated samples
he same rat tissue, we fitted a generalized estimating equ
GEE) model to the RT-PCR data. The GEE model with an
hangeable correlation structure was assumed and the id
ink function for a normal random variable was specified.
xchangeable correlation structure specified that the corre
etween any two distinct repeated samples from the sam

issue remains the same regardless of the animals. This
ial correlation structure is particularly useful for cross-secti
tudies with repeated samples because samples from the
nimals are not ordered. The GEE model was fitted with the
rocedure PROC GENMOD(The SAS Institute, 2000), which
ielded treatment effect for theCT change. Since the GEE mod
ccounted for the correlation between repeated samples,

imated variability was between those of Models 1 and 2.

. Results and discussion

Table 2displays the treatment effect (��CT) and its standar
rrors estimated for different target genes by Models 1–3. M
yielded the same values in estimation of��CT as Model 3
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Table 2
Estimation (S.E.) of treatment effect (��CT) between arginine and alanine supplementations

Gene Model 1 Model 2 Model 3 Folda Correlationb

AMP-activated protein kinase −0.62 (0.399) −0.87 (0.309)∗ −0.62 (0.336) 1.54 0.67
Calcineurin −0.17 (0.276) −0.20 (0.455) −0.17 (0.226) 1.13 0.72
Heme oxygenase-3 −3.50 (0.377)∗ −3.71 (0.218)∗ −3.50 (0.308)∗ 11.3 0.89
Nitric oxide synthase-1 −1.14 (1.445) −1.45 (0.534)∗ −1.14 (1.151) 2.20 1.00
Ornithine decarboxylase −0.14 (0.387) −0.31 (0.221) −0.14 (0.316) 1.10 0.90
PPAR� coactivator-1� −2.94 (0.510)∗ −3.52 (0.136)∗ −2.94 (0.417)∗ 7.67 1.00

a Fold change calculated based on Model 3, which incorporates the correlation between samples from the same tissues.
b Correlation coefficient between repeated samples estimated by the GEE model.
∗ Statistically significant withp < 0.05.

However, Model 1 averaged the repeated samples from each rat
tissue, resulted in loss of information, and thus yielded slightly
larger variability with larger standard errors compared to Model
3. If the numbers of animals and repeated samples were moderate
or large, this loss of information may be large enough to have
led to false negatives. Namely, genes that are truly differentially
expressed may be claimed as being statistically nonsignificant
due to larger standard errors than true values. Although Model
1 yielded correct estimation of the change in gene expression
levels, it is somewhat too conservative in identifying statistical
significance.

On the contrary, Model 2 yielded very different effect estima-
tion, because it treated all samples as independent and ignored
the correlation between the samples from the same rat tissue.
As shown inTable 2, Model 2 yielded statistically significant
changes in AMPK and NOS expression in addition to HO-3 and
PPAR� coactivator-1� (PGC-1�), while Models 1 and 3 identi-
fied statistically significant changes only in HO-3 and PGC-1�.
Evidently Model 2 yielded incorrect estimation, and may poten-
tially have produced false positives. Another drawback of Model
2 is that if an experiment is not carefully designed and has largely
different numbers of repeated samples for different animals,
Model 2 will weigh more on the animals with a large number of
repeated samples and will thus yield largely biased estimation.

Compared with Models 1 and 2, Model 3 yielded accurate
estimation for the change in gene expression levels as Model 1.
I sam
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In summary, if repeated samples are taken from the same
animal tissues, specifying a GEE model with an exchangeable
correlation structure as in Model 3 yields accurate estimation
of the change in gene expression and its standard error. Even
if unequal numbers of repeated samples are collected from
different animals, the GEE model still yields robust and
accurate estimation and standard error of the change in gene
expression.

4. Conclusion

Real-time RT-PCR has been used frequently in quantitative
research in biology and bioinformatics to assess differential ex-
pression of genes. Although mathematical models for the fold
change of genes are straightforward, different statistical mod-
els may yield different estimations and confidence intervals for
changes in gene expression. It is thus critical to specify a statis-
tical model that properly reflects data structure. We proposed a
GEE model to reflect the repeated sample structure in RT-PCR
data, and demonstrated that it yielded accurate estimation and
prevented from producing false positives or false negatives.
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ppendix A. SAS program for the GEE model

*** Assume the data set in Table 1is named
PCR;

Data pcrdiff;
Set pcr;
Respvar = ampk - cpt2;
**** cpt2 serves as the endogenous

**** reference gene;
**** The Respvar can be changed by

**** replacing ampk to other genes
**** to compute the change of expression

**** levels of other genes;
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Run;

Proc sort data = pcrdiff;
By treat rat samp;
Run;

Proc GENMOD data = pcrdiff;
Class treat rat;
Model Respvar = treat /dist = normal link

= identity type1 type3;
Repeated subject = rat /type = exch

corrw;
Run;

**** The effect estimate of the treat
**** effect in the SAS GENMOD

**** output is the value of
**** ��CT;
**** But be cautious with the sign, which

**** depends on what level

**** of treatment is set as the reference
**** in the SAS output;
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