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Abstract

Real-time RT-PCR has been frequently used in quantitative research in molecular biology and bioinformatics. It provides remarkably use
technology to assess expression of genes. Although mathematical models for gene amplification process have been studied, statistical mode
methods for data analysis in real-time RT-PCR have received little attention. In this paper, we briefly introduce current mathematical models,
study statistical models for real-time RT-PCR data. We propose a generalized estimation equations (GEE) model that properly reflects the struc
of repeated data in RT-PCR experiments for both cross-sectional and longitudinal data. The GEE model takes the correlation between observa
within the same subjects into consideration, and prevents from producing false positives or false negatives. We further demonstrate with a st
actual real-time RT-PCR data that different statistical models yield different estimations of fold change and confidence interval. The SAS progr
for data analysis using the GEE model is provided to facilitate easy computation for non-statistical professionals.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction In real-time RT-PCR experiments, fluorescence techniques,
suchas Tagman, SYBR green and Beacons, are used to detect the
Real-time reverse-transcript (RT) polymerase chain reactioamplification of target genes and to assess their expression lev-
(PCR) has gained increasing popularity in quantitative researchls. A fluorescence threshold R),) is usually predetermined
of molecular biology and bioinformatig§Valker, 2002) It has  for an experiment. A cycle threshold'f), the value of cycle
now become a standard technique for assessing expressionaifwhich the fluorescence achieves the predetermined threshold
genes that potentially have impact on disease pathology or heal(A R,,), can then be determined for each target gene through
prognosis. In RT-PCR experiments, total RNA is extracted fronmonitoring the fluorescence in individual PCR wells or tubes,
tissues or cells in response to different treatments (e.g. variwhere target genes are amplified in separate wells or tubes. The
ous levels of irradiation, dietary nutrient intake or therapeuticCt values of target genes are recorded and output with the com-
agents), or different physiological and pathological conditiongputer system connected to the PCR. Since the cycle threshold
(e.g. age, pregnancy, lactation, and tumorigenesis), and is themd the logarithm of the input expression level of one specific
reverse transcribed and amplified through DNA polymerase. Iigene form an inverse linear relationship, a unique line is deter-
the process of RT-PCR analysis, specific primers are used to amiined for each target gene as showrkig. 1 Different genes
plify target genes through numerous cycles, where each cycimay have different slopes. Such a linear relationship can be
consists of three steps, denaturation, annealing, and extensiarsed to determine the level of absolute gene expression in the
During the amplification process, one copy of the target gene imput RNA sample if the slope is known or can be calculated
doubled and then quadrupled, and is amplified exponentially t¢Pfaffl, 2001) However, the slope also depends on experimen-
2" copies aften cycles. tal factors which may vary from one experiment to another. In
an RT-PCR experiment, usually tldi& value corresponding to
the threshold AR,,) is recorded for each target gene, which is
* Correspondinguthor not enough to determine the slope and thus the level of absolute
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o 2. Materials and methods
2.1. RT-PCR data

We recently conducted a nutritional study involving dietary
supplementation of arginine [1.51% arginine—HCl or 2.55% ala-
nine (isonitrogenous control) in drinking water] to 9-week-old
male Zucker diabetic fatty (ZDF) ratfu et al., 2005)At the
end of a 10-week supplementation period, various tissues were
isolated from control and arginine-treated 19-week-old ZDF
rats. Statistical analysis indicated that abdominal and epididy-
mal adipose tissues were 44.5% and 24.7% lowrek (0.01)
in arginine-treated ZDF rats when compared with control ZDF
rats. The weights of all non-fat tissues (including skeletal mus-
cle, liver, heart, kidneys and brain) did not diffeP & 0.05)
between control and arginine-supplemented ZDF rats. In search
for genes that are differentially expressed and potentially re-
sponsible for the difference in abdominal fat mass, a microar-
ray study was conducted to identify the differentially expressed
genes in the two groups of ZDF rats, followed by an RT-PCR
experiment to confirm the findings of the microarray study. For

o the RT-PCR study, total RNA samples were extracted from six
: : : : study rats (three arginine-treated rats and three control rats), us-
1 e-01 1 e+01 1 e+03 1 e+05 ing TRIzol reagent (Life Technologies, Gaithersburg, MD). To
input quantity achieve accurate reading, two repeated samples from each rat tis
sue were subjected to RT-PCR analysis, using the SYBR Green
Fig. 1. The inverse linear relationship between cycle thresfiold énd the — athog and the Amp 5700 Sequence Detection System (Applied
Ioganthm oflnput_qgantlty of t‘argetgfene demonstrated with hypothetical dataB. t Foster City. CAYable 1lists theC~ readin h
The horizontal axis is plotted in logarithm scale. losystems, Foster Lity, Jable .I_S s the T eadings o
the samples by target genes. Carnitine palmitoyltransferase-2
(CPT-2) was used as an endogenous reference gene and its fold
gene expression in the input RNA sample. Fortunately, the relehange is thus set at one.
ative expression of target genes in terms of the expression ratio
can be determined on the basis@f values under certain as- 2.2. Mathematical models for RT-PCR
sumptions, and the differentiation of gene expressions and the
fold change between control and treatment groups can be further Mathematical models for the amplification of DNA se-
determined. To validate th@r readings of RT-PCR, an endoge- quences in RT-PCR are based on the following considerations.
nous reference gene is usually used in the experiment to adjuBiNA sequences are amplified in RT-PCR through DNA poly-
for any potential unaccounted variation or bias. merase. During the amplification process, a copy of target gene

Since RT-PCR is used frequently in quantitative researcldoubles in one cycle, and then quadruples in the next cycle.
to assess fold changes of gene expression, statistical methotlserefore, the amplification is in the power of 2, namely expo-
of computing such fold changes play a critical role to en-nential amplification. An equation describes this process is:
sure the validity of results. Very often biologists extract re- "

. Y, = Yo2",
peated samples from the same tissue to ensure protocol con*
pliance or experimental consistency. However, statistical modwhereYy is the initial expression level of a target gene, &pds
els or methods that fail to reflect such a repeated sample struthe expression level of the gene afi@ycles. Because the ampli-
ture result in misleading conclusions and may potentially profication in an experiment is subject to variations in experimental
duce either false positives or false negatives. In this article, weonditions and may not be 100% efficient and the amplification
briefly discuss current mathematical models used in RT-PCRrocess may not end with an exact number of cycles, the above
studies. We then propose a generalized estimating equatioesjuation may be written as
(GEE) model to analyze RT-PCR data, and demonstrate tth= — Yo(l+e)
practical usefulness of the GEE method using a real data sét — 0 s
collected from an actual RT-PCR experiment. We further pro-wheret is the duration of the amplification process in continuous
vide comparison of the GEE model with a few other models tonumber of cycles, andis the efficiency, which usually ranges
compute fold changes of genes. Finally we conclude that thbetween 0 (completely inefficient) and 1 (fully efficient). The
GEE model properly reflects the repeated sample structure egfficiencye may depend on many experimental factors, such as
ther in cross-sectional or longitudinal studies and yields corregbrimer concentration, buffer solutions, the fluorescence detec-
results. tion system, and other unknown factors, which may vary with
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Table 1

Ct readings of genes from RT-PCR analysis of ZDF rat abdominal adipose tissue

Treatmentt Rat no Sample CPT-2 AMPK Calcin HO-3 OoDC NOS-I PGe-1
Ala 1 1 18.67 22.37 17.62 27.45 17.26 31.72 24.15
Ala 1 2 18.62 21.98 17.49 27.39 16.95 32.96 24.19
Ala 2 1 18.12 20.14 17.17 25.77 17.36 b_ 22.52
Ala 2 2 17.78 20.26 17.35 25.90 17.31 b_ 22.35
Ala 3 1 18.02 21.24 17.12 26.23 17.33 29.56 24.24
Ala 3 2 18.32 21.60 17.36 26.28 17.42 28.86 24.36
Arg 4 1 19.36 22.04 18.02 24.16 17.99 31.42 21.56
Arg 4 2 19.36 21.16 18.17 23.77 17.54 31.18 21.36
Arg 5 1 18.59 21.12 18.12 24.03 18.11 30.55 21.31
Arg 5 2 18.82 21.40 18.13 23.89 17.94 31.13 21.34
Arg 6 1 18.95 21.23 17.38 23.32 17.77 28.57 21.43
Arg 6 2 18.76 21.24 17.56 23.14 17.74 28.33 2151

CPT-2, carnitine palmitoyltrrasferase; AMPK, AMP-activated protein kinase; Calcin, calcineurin; HO-3, heme oxygenase-3; ODC, ornithimeyeseaiiOS-|,
nitric oxide synthase-I; PGCel PPARy coactivator-i.

2 Arg, arginine treatment group; Ala, alanine control group.
b Missing data.

experiments. Thus, it is important to have an endogenous gemaodel:

to serve as an internal reference for ensuring the validity of RT—Z — K(1+e)ACT )

PCR results. Presumably, the less the endogenous gene varfés ™~

with the study treatment, the better the experimental outcomewith ACt = Ct, — C7 , andACt = C1 g — C?R for target
Assume the predetermined threshold for the fluorescencand reference genes, respectivélyis a constant and remains

level is Y1. For the target gene under treatment, we have the invariant with respect to genes, but may vary from one experi-

following equation at the threshotd: ment to another. Thus, if full efficiency is assumed witk: 1

as in the User Bulleti # 2 for ABI Prism 7700 Sequence De-

— CT.x . . . .
Yro=Yox(1+ed) " (1) tection System (Applied Biosystems Inc., Foster City, CA), the
Similarly for the endogenous reference g@&ae fold change of the target gene expression between treatment and
. control is calculated with:
YT,R = YO,R(]- =+ eR) T.R (2) 27AAC-|—’ (8)
In the same way, we have for the target gemader control:
y 9¢etg where  AACT = (Crx — Cf,) = (Cr.r = Ci ) = (CTac —
Yi =Y (1+ ex)cix’ 3) Ctr)—(CT, — C?R_). The termA ACt measures the relative
’ ' change of expression of genefrom treatment to control
and for the endogenous reference genender control: compared to the reference geke
Cc*
Y{R = YE)k,R(l +eg) TR (4) 2.3. Statistical models and methods

The efficiencieg, andeg remain the same for both treatment

and control groups. Taking the ratio of Eq) to (3) and the Although calculation of the relative changeACt and the

ratio of (2) to (4) yields: foIo_I chqnge in Eq(8) is strgightforward for many target genes,
estimation of these quantities and standard errors depends on

Ztx=Zox1+ ex) T O (5) statistical models and may vary largely. So far, we are not aware
of any statistical models or methods published in peer-reviewed

and journals for the estimation of the changeA Ct) and its stan-

Zrr = Zog(1l+ eR)CT,R*CzF,R, (6) dard error. The method for calculating the standard error of the

fold change provided in the User Bulletin #2 (Applied Biosys-

whereZt  andZy , are the ratios of T, to Y{X andYp . to Yék,x’ tems Inc.) is based on an incorrect formula on the coefficient
respectively. SimilarlyZt g andZo g are the ratios o¥T g to of variation for a ratio of two random variables (page 34 of
Y§ g andYo g to Yg 1, respectively. The model Byfaffl (2001)  the User BulletinApplied Biosystems Inc., 199:We compare
can thus be derived with E@5) and (6) by settingEiarget= ~ three simple statistical models for RT-PCR data, the model av-
1+ e, andEwes = 1+ ep. eraging repeated samples, the independent sample model and

If only the Ct values of the target and reference genes at théhe GEE model, with the above data set on gene expression in
predetermined threshold are recorded and no other informaticebdominal adipose tissue of ZDF rats. We demonstrate that for
is available, the efficiencies, ander cannot be determined given readings o€t values, different statistical models lead to
and thus assumptions are needed in order to calculate the fottifferent estimations, and improper statistical models that fail
changes of genes. Under the assumption of equal efficiency fdo reflect the structure of repeated data may potentially lead to
both target and reference genes, ée= er = ¢, we have the false positives or false negatives. We conclude that the GEE
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model reflects the repeated sample structure either in cros8:5.1. Model 1: simple model averaging repeated sample

sectional or longitudinal RT-PCR data and thus leads to corregkadings

estimation. Since two repeated samples were drawn from the same animal

fattissue, averaging th@r readings of the two repeated samples

achieved accuracy i@t values for each rat tissue. Further anal-

ysis was thus based on the averaged readings. Although such
Although RT-PCR data are usually obtained from cross&n approach improved accuracy for the reading of each animal

sectional studies (i.e. experimental tissues obtained at the sarfleSue, information is lost by averaging out the raw data within

time point), longitudinal studies using microarrays and othefach animal, resulting in a smaller sample size and larger vari-

technologies become more and more pop(ru and Hero, ability. The larger variability led to larger standard errors and

2005) It is known that data collected from the same subjectéarger confidence intervals of the change in expression levels.

either repeatedly in cross-sectional experiments or in longitu! "US; this method is not preferred unless the experiment is not

dinal experiments are correlated. Statistical models that fail tG&réfully designed and has largely unequal numbers of repeated
address such a structure of repeated data yield incorrect coR@mPples for different animals.

clusion.Liang and Zeger (198§)roposed generalized estimat-

ing equations (GEE) model to incorporate correlation structur->-2- Model 2: ANOVA model assuming independent

into the model by specifying a working correlation structure be-S@mples .

tween observations of the same subjects. One advantage of th_is'A‘“hOUgh itis known that repeat_ed samples from the same rat
approach is that although the working correlation structure ma§/SSU€ are correlated, such correlation may often be overlookedin
be specified in many different ways, the parameter estimatiorfdractical data anaIyS|s_ by non—statlsncall professionals. A modgl
obtained from such a model are consistent. That means the GER2t treats all samples independent and ignores such a correlation
model results in correct estimation of the parameters even witl§ €xPected to yield different results. This model regarded all six
incorrect specification of correlation structure. We now brieflySamPples in each treatment group as independent samples, and

introduce the GEE model for correlated observations. More det'€ Sample size was thus incorrectly considered to be 12 for the
tails can be found in the original paper yang and Zeger two treatment groups although the two repeated samples from
(1986) the same animal tissue were highly correlated. The effect of the

Assume that a longitudinal study h&subjects. Each subject endogenous reference gene CPT-2 was adjusted by subtracting
k=1,..., K hasn; observations;; with i = 1, ..., n; with the Ct readings of CPT-2 from those of the target genes. Note

corresponding covariate representing demographic and clinictat the adjustment of the reference gene CPT-2 by incorporating
conditionsx;;, j = 1. ..., p. If the investigators are mainly in- 1S Ct reading as a model covariate does not comply with the
terested in how the response variabjevaries with the covari- Mathematical mode($) and (6)oecause this adjustment almost
atesLiang and Zeger (198@roposed the following GEE model surely yields a pgrameter estimate for the effect _of CET—Z not
based on marginal distributiofi(yx;) = expllykif — b(6x) + equal to one, which makes the model adjustment invalid.
a(Yui)}o]-

2.4. Generalized estimating equations model

2.5.3. Model 3: GEE model accounting for correlation

K 1 between repeated samples
Z DV =Sk =0, C) To account for the correlation between repeated samples from
k=1 the same rat tissue, we fitted a generalized estimating equations

(GEE) model to the RT-PCR data. The GEE model with an ex-
. ) : changeable correlation structure was assumed and the identity
trix, Dy = d{b(6)}/dp = A"A’fx"’ AJ‘_ = d'ag(w""/an")' and  ink function for a normal random variable was specified. The
Sk = yx — by (9). The GEE estimatof is consistent, i.e. the €s- oy changeable correlation structure specified that the correlation
timation converges to true parameter value as samplefSize pepyeen any two distinct repeated samples from the same rat

increases to sufficiently large or infinity. o tissue remains the same regardless of the animals. This spe-
The GEE model was developedinitially for longitudinal stud- 5| correlation structure is particularly useful for cross-sectional

ies where multiple observations along time were taken from eachy gies with repeated samples because samples from the same
subject(Liang and Zeger, 1986)The GEE model can also be apimajs are not ordered. The GEE model was fitted with the SAS
applied to clustered data where correlated observations may NBfocedure PROC GENMODThe SAS Institute, 2000Wwhich

be ordered in time or other factors, such as survey data withijio|qed treatment effect for ther change. Since the GEE model
household. The GEE model can be run with the SAS GENMOL, ¢cqynted for the correlation between repeated samples, its es-

procedure as shown in tigppendix A timated variability was between those of Models 1 and 2.

where V, = A,%/ZR(a)A,%/z/gb is the working covariance ma-

2.5. Comparison of statistical models and computational 3. Results and discussion
methods
Table 2displays the treatment effeck A Ct) and its standard
We fit three statistical models to the ZDF rat RT-PCR data irerrors estimated for different target genes by Models 1-3. Model
Table 1 and compare the results. 1 yielded the same values in estimation/oA Ct as Model 3.
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Table 2

Estimation (S.E.) of treatment effeck ACT) between arginine and alanine supplementations

Gene Model 1 Model 2 Model 3 Fdtd Correlatio®
AMP-activated protein kinase —0.62(0.399) —0.87 (0.309)* —0.62(0.336) 1.54 0.67
Calcineurin —0.17(0.276) —0.20 (0455) —0.17 (0.226) 1.13 0.72
Heme oxygenase-3 —3.50(0377) —3.71(0.218)" —3.50(0.308)" 11.3 0.89

Nitric oxide synthase-1 —1.14(1445) —1.45 (0534} —1.14(1151) 2.20 1.00
Ornithine decarboxylase —0.14(0.387) —0.31(0221) —0.14(0316) 1.10 0.90
PPARYy coactivator- —2.94 (0510} —3.52 (0136} —2.94 (0417} 7.67 1.00

2 Fold change calculated based on Model 3, which incorporates the correlation between samples from the same tissues.
b Correlation coefficient between repeated samples estimated by the GEE model.
* Statistically significant withp < 0.05.

However, Model 1 averaged the repeated samples from each rat In summary, if repeated samples are taken from the same
tissue, resulted in loss of information, and thus yielded slightlyanimal tissues, specifying a GEE model with an exchangeable
larger variability with larger standard errors compared to Modekorrelation structure as in Model 3 yields accurate estimation
3. Ifthe numbers of animals and repeated samples were moderaiethe change in gene expression and its standard error. Even
or large, this loss of information may be large enough to havéf unequal numbers of repeated samples are collected from
led to false negatives. Namely, genes that are truly differentiallygifferent animals, the GEE model still yields robust and
expressed may be claimed as being statistically nonsignificamtccurate estimation and standard error of the change in gene
due to larger standard errors than true values. Although Modedxpression.

1 yielded correct estimation of the change in gene expression

levels, it is somewhat too conservative in identifying statisticakd. Conclusion

significance.

Onthe contrary, Model 2 yielded very different effect estima- Real-time RT-PCR has been used frequently in quantitative
tion, because it treated all samples as independent and ignoressearch in biology and bioinformatics to assess differential ex-
the correlation between the samples from the same rat tissupression of genes. Although mathematical models for the fold
As shown inTable 2 Model 2 yielded statistically significant change of genes are straightforward, different statistical mod-
changes in AMPK and NOS expression in addition to HO-3 ancels may yield different estimations and confidence intervals for
PPARy coactivator-& (PGC-1v), while Models 1 and 3 identi- changes in gene expression. It is thus critical to specify a statis-
fied statistically significant changes only in HO-3 and PGC-1 tical model that properly reflects data structure. We proposed a
Evidently Model 2 yielded incorrect estimation, and may poten-GEE model to reflect the repeated sample structure in RT-PCR
tially have produced false positives. Another drawback of ModeHdata, and demonstrated that it yielded accurate estimation and
2isthatif an experimentis not carefully designed and has largelprevented from producing false positives or false negatives.
different numbers of repeated samples for different animals,

Model 2 will weigh more on the animals with a large number of Acknowledgements
repeated samples and will thus yield largely biased estimation.

Compared with Models 1 and 2, Model 3 yielded accurate This research was supported, in part, by grants #R25-
estimation for the change in gene expression levels as Model LTA90301 (W. Fu) and #5R01-CA57030 (R. Carroll) from
It also took into account the correlation between repeated sanNIH/NCI, by Center for Environmental and Rural Health grant
ples from the same rat tissue and thus accurately estimated t#®30-ES09106 from NIEHS, by a grant #1R01-HD38274 (T.
variability and the standard errors. The SAS program for ModeBpencer) from NIH, and by a grant #0255878Y (G. Wu) from
3 also yielded an estimate of the correlation coefficient betweethe American Heart Association. We thank Dr. Qi Ding for valu-
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efficients between 0.67 and 1 indicate that a proper correlation
structure must be incorporated in the model. Failure in doing s&ppendix A. SAS program for the GEE model
will result in biased estimation as in Model 2.

Since the power function’2is nonlinear, confidence in- *** Assume the data set in Table 1is named
tervals for the fold change are preferable than standard PCR;
errors. Confidence intervals can be calculated with lower Data pcrdiff;

limit 2~AACT—Z0-w/2S E. and upper limit 222¢T+20-e/2S E, Set pcr;

based on the upper and lower confidence lImMtAACT + Respvar = ampk - cpt2;

Z(1-a2)S.E. of the chang& ACt, where S.E. is the standard **** cpt2 serves as the endogenous
error of the change-AACT. Z(1_q/2) is the 100x (1 — «/2)- ***% reference gene;

th percentile of the standard normal distribution Normal (0, 1), **** The Respvar can be changed by
anda is the level for a (- @) x 100% confidence interval. A *x** replacing ampk to other genes

standard error of the fold change, if preferred, can be calculated *** to compute the change of expression
with the statistical delta methqdlehmann and Casella, 1998) ***x Jevels of other genes;
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Run;

Proc sort data = pcrdiff;
By treat rat samp;
Run;

Proc GENMOD data = pcrdiff;

Class treat rat;

Model Respvar = treat /dist = normal link
= identity typel type3;

Repeated subject = rat /type = exch
COrrw;

Run;

**** The effect estimate of the treat
**** effect in the SAS GENMOD

**** output is the value of

* kK % AACT,

**** But be cautious with the sign, which
**** depends on what level

**%*% of treatment is set as the reference
**** in the SAS output;
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