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We  explain  how  to design  classic  digital  assays,  comprising  identical  partitions,  in  order  to  obtain  the
required  precision  of  the estimate  within  a defined  range  of  concentrations.  The  design,  including  the
number  and  volume  of  partitions,  depends  significantly  on  whether  the assay  is to assess  the  concen-
tration  of  the  target  analyte  in  the  sample  or in  the  source  of  the  sample  (e.g. a  patient  body)  with  a  given
precision.  We  also  show  how  to translate  the result  referring  to the  concentration  in the  sample  into  the
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concentration  in  the  source  of  the  sample,  including  the  significant  change  in  the  breath  of  the  confidence
intervals.

© 2016  The  Author(s).  Published  by  Elsevier  GmbH.  This  is  an open  access  article  under  the  CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).
iagnostics

. Introduction

Here we discuss explicitly the significant differences in the
recision of estimates provided by digital assays, depending on
hether the assay addresses the concentration of the target in the

ample, or in the clinical source of the sample (e.g. a human body).
he two estimates enforce different statistical description of the
ignals in the assay and require a different design of the experi-
ental protocol to provide the estimates with required quality.
DNA-, RNA- and immuno-diagnostics require assays that pro-

ide precise, quantitative answers and that address wide dynamic
anges of detectable concentrations. Digital assays [[1–6]; the his-
ory of digital PCR is described in a review article by Morley]
ntroduced absolute and precise quantization. The performance
f the digital analytical techniques is typically parameterized by
he dynamic range of concentration within which a given stan-
ard deviation (or variance) of the estimate is guaranteed. It is

ot commonly appreciated that both the standard deviation of the
stimate and the dynamic range of the digital assessment depend
ritically on the method of calculation and of the interpretation

Abbreviations: PCR, polymerase chain reaction; MPN, most probable number;
C,  monte carlo (simulation).
∗ Corresponding author at: Institute of Physical Chemistry, Polish Academy of
ciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.

E-mail address: garst@ichf.edu.pl (P. Garstecki).
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of the result. The proper understanding of the results generated
by digital assays is also important in optimization [7]. Here we
explain the full analytical procedure, the sources of errors and the
proper understanding of the estimate of concentration of the target
marker.

Standard analytical techniques use a single ‘analogue’ measure-
ment on the sample to estimate the concentration of the analyte
via a comparison to a calibration curve (of e.g. absorbance of light
by reference samples). Digital analytical assays, first proposed by
McCrady in 1915 for quantification of bacteria and later developed
in 1990s for PCR by Sykes [5], and Vogelstein and Kinzler [2], split
the sample into a large number of partitions, each later separately
amplified for signal. The initial concentration of the target analyte
is estimated from the fraction of positive end-point signals. Positive
signals typically reflect the presence of at least one molecule of the
target analyte. (Fig. 1).

Digital assays have a number of attractive characteristics. Most
importantly, they provide absolute estimate of concentration,
increasing accuracy and alleviating the need to use reference
standards. Digital methods can also be highly sensitive (from 1
molecule/assay) and highly precise. These features prompt the
widening use of digital techniques, especially in oncology and in the
detection of very minute quantities of diagnostic markers but also

progressively as standard quantitative assays for DNA markers [8].
Moreover, digital techniques, and therefore the methodology we
presented here, may  find use in quantitative identification of viral
and microbial pathogens in physiological samples in assays pre-
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Fig. 1. The complete protocol for a digital assay. The upper shaded area shows the medical and analytical procedure. The source (e.g. a human body) presents an unknown
concentration C of the analyte. A small sample of volume VS drawn from the source contains MS molecules. The concentration CS = MS/VS of target in the sample is —
especially for small VS and C— a stochastic variable of C. The sample then undergoes a procedure of isolation of nucleic acids and the elute (containing M ≤ MS molecules) is
mixed with reagents for PCR to a final volume of the assay VA . The PCR-ready mixture is then divided into N partitions, with the molecules of the target randomly distributed
between them. Amplification via PCR yields the raw result: K positive signals from N partitions. This result can be then translated via analysis (bottom shaded area) − either
within a ‘dependent’ scheme to yield ED (CA) corresponding to the estimate E (CS) of concentration in the sample, or, via the ‘independent’ analysis to yield EI (CA) corresponding
to  the estimate E (C) of the concentration of target in the original source of sample. Each of these estimates has a different confidence interval. The schematic picture of the
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uman body is based on graphics available at: http://cliparts.co/, and https://comm

ared for the point-of-care formats. Looking further, finding new
hemically specific chain- and avalanche reactions that could serve
or amplification of the presence of small counts of molecules of
nalyte could become an important direction in the development
f new analytical methods in chemistry, biochemistry and medicine
9].

The analytical procedure usually focuses on determining the
oncentration C of the target analyte in the source (e.q. human
ody). It begins with drawing a sample of volume VS that contains

 stochastic number MS of molecules of the target. The number of
olecules is a Poisson random variable with average value equal

 × VS . Therefore, MS∼Pois (CVs) = exp(−CVs) × (CVs)MS

MS! . The concen-
ration CS in the sample is thus a stochastic variable of C and of VS:

S = MS/Vs∼ 1
Vs

× Pois (CVs) = 1
Vs

× exp(−CVs) × (CVs)MS

MS! . The sample
s then purified and mixed with the reagents for the PCR assay.
his results in a volume of the assay VA = Velution + VPCR. The vol-
me of the assay is then split into N compartments, each of volume
, Nv = VA. After the PCR reaction on all of the individual com-
artments, we read the raw result, i.e. K positive signals from N
artitions. This raw result can be then translated into the estimate
f the initial concentration of the analyte in the assay E (CA) that is
rovided with a finite relative standard deviation � (CA),  which can
lso be treated as the precision of the estimate.

As we show below, the analysis can be performed via two
chemes. In the first, one assumes that the probability of finding a
olecule of target in any partition depends on the placement of tar-

et analyte in all other compartments in the assay. This corresponds
o the actual situation of drawing the molecules from a finite pool
ontaining only M target molecules. In this context, the finite pool

s the volume of an assay. This (dependent) scheme can be trans-
ated into the estimate of the concentration of target in the sample:
(CS) = ˛ED (CA),  and � (CS) = �D (CA),  where  ̨ is a numerical fac-

or reflecting the change in the volume between the sample and
ikimedia.org/wiki/ File:Vein art near.png.

the assay and the efficiency of isolation � = M/MS:  ̨ = (VA/VS)/�.
However, this estimate is limited only to the volume of the sam-
ple, which is usually very small compared to its source, i.e. human
body. Therefore, the precision of the estimate provided by the test,
which is typically given by the producer of a dPCR system, might
be misleading if the concentration in the human body is of interest.

In the second (independent) scheme, the estimate is provided via
an analysis based on the superficial assumption that the probability
of finding a molecule of target in any particular partition is indepen-
dent of all the other ones (just as if the material for each partition
was drawn directly from large reservoir − a source of the sample,
i.e. human body). Via this analysis we can obtain the estimate of
the concentration of the target in the

Source: E (C) = ˛EI (CA),  and � (C) = �I (CA).  Therefore, the pre-
cision of the estimate, calculated in this approach, provided by the
test concerns the concentration in the human body.

Below we  show how the two  methods of analysis of digital
estimates can be conducted, how different are the relative stan-
dard deviations �D and �I , and how to design digital assays for the
required precision of assessment of the concentration in the sample
or in the source over a required range of concentrations.

2. Results

In a classic digital assay [2,10,11] the sample is equally divided
between a number N of identical partitions. All the partitions are
then amplified via PCR after which the binary signal is read from
each partition. Once the signals are collected, they must be trans-
lated into the estimate of the (a priori unknown) concentration of

the analyte in the sample, and concentration of the analyte in the
source of the sample (e.g. in a human body). (Fig. 2).

Current mathematical procedures used to analyze the outcome
of the assay are based either on the Most Probable Number (MPN)

http://cliparts.co/
http://cliparts.co/
http://cliparts.co/
http://cliparts.co/
http://https://commons.wikimedia.org/wiki/
http://https://commons.wikimedia.org/wiki/
http://https://commons.wikimedia.org/wiki/
http://https://commons.wikimedia.org/wiki/
http://https://commons.wikimedia.org/wiki/
http://https://commons.wikimedia.org/wiki/
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Fig. 2. (a) Average (most probable) response of a classic digital assay to a given
concentration in the source (independent approach — blue line, calculated analyti-
cally) or concentration in the sample (dependent approach — red points, each point
represents an average from 10,000 MC  simulations). The assay comprises N = 100
identical partitions. (b) Although the average response of the assay is the same
regardless of the statistical formalism, the confidence intervals for the results are.
For small concentrations corresponding to a low number of molecules in the sam-
ple,  the standard deviation of the estimate based on independent analysis reaches
100% of number of signals. In a sharp contrast, the number of positive signals vs.
the  concentration in the sample has vanishing standard deviation in the limit of one
t

a
a
s
n
m
c
p
n
d
b
o
t
B
i
t

b
l
d
b
e
a

r
p
c
v
o
t
o
t
p
p

Fig. 3. The difference in the standard deviation of the estimate of the concentration
of  analyte for the two  approaches. Standard deviation �I (CA) of the estimate of EI (CA)
in  the independent approach (equal to the standard deviation � (C) of the estimate
E (C) of  concentration in the source, blue points) is almost always significantly higher
arget molecule.

lgorithm [12–18] or Bayes’ formalism [8,19]. Both methods are
pplicable either for the assessment of the concentration in the
ource C, or concentration in the sample CS (or alternatively, the
umber of molecules in the sample MS). The MPN  method esti-
ates the initial concentration of the analyte in the sample as a

oncentration that yields the highest probability of obtaining the
articular recorded outcome of the assay (i.e. ratio of positive and
egative partitions). Bayes’ formalism inverts the concentration
ependent probability of the recorded result to yield the proba-
ility distribution of a concentration having caused the result. Such
btained probability distribution provides the estimate of concen-
ration together with its standard deviation. Here we  focus on the
ayes’ formalism as it explicitly uses all the information contained

n the outcome of the assay. Still, the conclusions are valid also for
he MPN  formalism.

The most important distinction reflecting the difference
etween calculating the estimate of the concentration of the ana-

yte in the sample and in the source is reflected in the statistical
escription of the individual partitions in the assay. As we show
elow, digital assays can be designed and analyzed in two differ-
nt ways to provide either the estimate of the concentration of the
nalyte in the sample, or in the source of the sample.

The most commonly used approach (that we call ‘dependent
andom variables’) focuses on the number of particles in the sam-
le. The number of particles M available for distribution between
ompartments in the digital assay is fixed. The act of splitting the
olume of the assay into partitions only randomizes the placement
f these particles between compartments. Thus, the occupancies of
he partitions by particles of analyte are not independent of each

ther. For example, if there was only one molecule (CA = 1/VA) in
he assay divided between hundred compartments, and one com-
artment already had the particle, for all other compartments the
robability of finding a particle is exactly zero. Generally, the use
than the standard deviation �D (CA) of the estimate of ED (CA) (equal to the standard
deviation � (CS) of the estimate E (CS) of concentration in the sample, red points).

of dependent variables in the analysis allows one to estimate the
concentration of the analyte in the sample, and not in the source of
the sample.

In the second approach one is interested in the concentration
of the analyte in the source of the sample. Even though the proce-
dure is the same (i.e. the partitions are drawn from the sample), one
assumes that each of the compartments is as being drawn indepen-
dently from the source. Then, the probability p of finding particles in
a compartment of volume v is independent of the presence of par-
ticles in any of the other compartments and is only a function of CA:
p = 1 − e−CAv. This analysis is superficial. For example, it does not
exclude an impossible situation in which for CA = 1/VA, two or more
compartments yield a positive signal. Nonetheless this scheme of
analysis provides correct estimates, yet with higher standard devi-
ations corresponding to the concentration of particles in the source
C and not just in the sample CS .

The difference between these two  approaches to the analy-
sis of the result (i.e. of the number of positive signals from an
assay) can be best observed in the standard deviations of the
estimates of concentration. In the ‘dependent’ scheme, the prob-
ability of observing exactly K positive compartments while there
are M =  ̨ × CS × VS = CA × VA molecules in the assay is

p (K |M, N) =

(
N

K

)∑K−1
i=0

[
(−1)i

(
K

K − i

)
(K − i)M

]

NM
.

In contrast, in the ‘independent’ scheme, the probability of
observing exactly K positive compartments given the concentration
of the molecules in the assay is CA is:

p (K |CA, N) =
(

N

K

)
(1 − e−CAv)K (e−CAv)N−K .

As a result, the ‘dependent’ algorithm yields a much smaller
standard deviation of the estimate of ED (CA) and E (CS),  than the
standard deviation of the estimate of EI (CA) and E (C) provided by
the ‘independent’ algorithm (Fig. 3). In other words, and quite intu-
itively, the estimate of the concentration of the target in the sample
can be given with tighter confidence intervals than the estimate of
the concentration in the source of the sample.

There is a way to translate between the two estimates — i.e.
once having the estimate for the concentration of particles in the
sample, and knowing the volume of the sample, one can calculate

the estimate of the concentration of particles in the body (with a
higher standard deviation).

The translation of the results from the dependent approach i.e.
the distribution of concentration in the sample into the distribution
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Fig. 4. Convolution as way  to translate dependent (i.e. relating to the concentration
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Fig. 5. (a) Standard deviation of the estimate of concentration in the source based
on  ‘independent’ approach (blue dots) and the concentration in the sample based
on  ‘dependent’ approach (red dots). Dotted lines show the threshold values of the
relative standard deviation of the estimate (�threshold) for which one can univo-
cally determine the dynamic range � = C+/C− , where C− is the minimum and
C+ is the maximum concentration. (b) Then, for any assay, it is possible to draw
a  function � (�threshold).  The deflection point (red and blue stars) of this function

defines
(

�∗, �∗
)

that corresponds to an objective, reasonable trade-off between

the breath of dynamic range and tightness of standard deviation of the estimate. (c)
Dependence of �∗ (�∗) shows how these most important characteristics of a digi-
tal assay are bound, as a function of the number N of compartments in the assay.
The  dashed lines represent best fits to the numerical results (blue represents for
n the sample) to independent (concentration in the source of sample) analysis.

f concentration in the source (independent approach) is done by
he mathematical procedure of convolution. In essence, the proba-
ility that one state of the assay (fraction of positive compartments)
as caused by a given concentration C (in the source), must take

nto account the conditional probability that one observed K signals
rovided there were M molecules in the sample and the probability
hat there were M molecules in the sample provided the concen-
ration in the source was  C. Formally, the probability of registering

 signals provided concentration in the source was  C is equal to the

ollowing sum: p (K |C) =
∞∑

M=0

[p (K |M) ×  p (M|C)],  where p(K |M) is

he outcome from dependent analysis, and p(M|C) is the probabil-
ty that at concentration C there were M particles in the sample,
iven by the Poisson distribution with expected value � = CVS . It
an be easily shown, that the outcome of this procedure is equal to
he outcome of independent analysis (Fig. 4, green points and blue
ine, respectively). The assessment of the concentration directly via
ndependent analysis is less complicated mathematically than via
ependent analysis and convolution.

Mathematically, the process of convolution (marked with the
ymbol ∗) employs the integral transformation of two functions,
ne of which is shifted. By definition, it is given by the following:

(x) = (g × h) (x) =
∞∫

−∞

g (�) h (x − �) d� .

In our case, we can replace f with p (K |C), g with p (K |M) and h
ith Poisson distribution p (M|C) = Pois (M, CVS).  Also, the discrete,
on-negative integer character of number of molecules in the sam-
le M has to be taken into account. Thus, the convolution for the
ase of digital assays can be given as:

(K |C) =
∞∑

�=0

p (�|C) p (K |�) .

The symbol of integration was replaced by summation due to
nteger character of the number of molecules M and �, and the limits
f integral are changed because this number cannot be negative.

There is also a possibility to translate the concentration in the
ource (independent analysis) into the concentration in the sample
dependent). Provided the distribution p (M|C) (i.e. probability that
here are M molecules in the sample provided concentration in the
ource is C) is known, one can recalculate the distribution p (K |C)
o p (K |M) with the procedure of deconvolution using p (M|C) [ESI].
owever, this translation does not always reproduce the distribu-
ion p (K |M) perfectly, especially for very small (close to zero) and
ery large (close to unity) fractions of positives and therefore it
s advisable to use dependent analysis if the concentration in the
ample is wanted (Fig. 4, red line).
�∗ (�∗) = 0.9925 × (�∗)−2.065 and red represents ˝∗ (�∗) = 0.1697 × (�∗)−2.214).

The proper understanding of the response of an assay, i.e. the
functions p (K |C) and p (K |M) allows to correctly interpret the
assessment of the concentration of the analyte. In this analysis,
we determine the precision of the assessment as the relative stan-
dard deviation of the estimate of initial concentration/number of
molecules of the analyte. We  use the calculated standard deviations
from the dependent and independent assays to derive equations
that allow to design the digital assays that address the requested
dynamic range of concentrations with the required standard devi-
ation of the estimate.

We start with introducing an objective definition (or measure)
of the dynamic range of the assay. Fig. 5a shows that although
the standard deviation of the estimates calculated via the depen-
dent and independent algorithms are very different, they share
the property of having a minimum, a relative plateau around the
minimum, and that they increase sharply at the low and at high
concentrations of the analyte. In general we  would like the assay

to provide an estimate with a standard deviation not larger than
�∗ in a dynamic range �∗ = C+/C− (where C− and C+ are the lower
and upper limit of the dynamic range, respectively). As can be seen
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n Fig. 5b, broadening the range enforces lessening the require-
ent on precision and vice versa. We  propose a reasonable and

bjective definition of the dynamic range by the deflection point
2�/d�2 = 0 →

(
�∗, �∗). For � < �∗, loosening the requirements

n precision (i.e. increase of �) rapidly increases �.  Above this
hreshold a the gain in breath of dynamic range does not justify
he decrease of precision of the assay. Although the choice of the
eflection points as bounds of the dynamic range is arbitrary, other
efinitions, based e.g. on Shannon entropy or other measures of

nformation will yield similar results.
The definition allows us to calculate �* and �∗ as a function of

he size of the assay N (Fig. 5c). As indicated earlier, the estimates of
he concentration in the sample (dependent analysis) almost always
i.e. at small and intermediate concentrations) yield more precise
esults (Fig. 5a). This translates into the fact, that reaching the same
recision requires much larger assays for estimating the concentra-
ion in the source (e.g. a human body).

As shown before, the standard deviation and dynamic range of
he classic digital assay are bounded together (Fig. 5c) and can only
e changed by tuning the number of compartments in the assay.
ndeed, after calculating the performance of several digital assays
ia Monte Carlo simulations, we have found that the standard devi-
tion � of the estimate is provided by an assay comprising at least

 compartments only if they follow a simple conditional formula
 ≥ a�−b (Fig. 5). This formula was determined from a close alge-
raic fit to the numerical results.

This behavior of digital assays is qualitatively the same in both
chemes (dependent and independent analysis). However, they dif-
er quantitatively because the assay responses in the independent
cheme show more fluctuations. Still, the relationship of the char-
cteristic parameters

(
�∗, �∗) can be drawn from best fits to the

esults. For independent scheme, one gets �∗ (�∗) = 0.9925 ×
�∗)−2.065, while for dependent analysis it is equal to: ˝∗ (�∗) =
.1697 × (�∗)−2.214.

Knowing the relation between the dynamic range and the stan-
ard deviation of the estimate for a classic digital assay containing

dentical partitions of the sample allows us to derive an explicit
rescription for the number of compartments N required to pro-
ide an assessment with the required precision over the required
ange of concentrations.

The ‘design’ equations listed below use the required dynamic
ange � = C+/C− and the relative standard deviation of the esti-
ate � as an input. For the independent scheme the values of C−

nd C+ can be chosen freely, with the only obvious condition that
− < C+:

 = max (N� × N�)

� = 1.447 × �0.985

� = 1.436 × �−2.033 .

For dependent scheme, we assumed that C− is equal to one
olecule in the assay (i.e. C− = 1/VA). C+ corresponds to the max-

mum number of molecules Mmax expected to be found in the
olume of the assay. For the dependent analysis: N = max (N�; N�)

� = 2.154 × �0.857

� = 0.454 × �−1.912.

N� and N� are the minimum numbers of compartments needed

o provide assessment with the required dynamic range or the
equired standard deviation respectively. The assay should com-
rise at least the higher number (of the two) of compartments in
rder to satisfy both the requirement on precision and on the breath
on and Quantification 10 (2016) 24–30

of the dynamic range. However, in some dPCR systems, the num-
ber of compartments cannot be hard-defied. In this case, the design
equations can be inverted to give the value of the relative stan-
dard deviation of the estimate and the dynamic range the system
provides [ESI].

Surprisingly, in the independent analysis, the assay reaches its
optimum mode (i.e. reaches the plateau of standard deviation of the
estimate, shown in Fig. 5a) where about 20% of its compartments
are positive [ESI], which provides the condition for the volume of
a single compartment of the assay. Knowing C− and N, the volume
v of each of the compartments should be: v = ln(1.25)

C− , yielding the
total volume of the assay VA = Nv = N × ln (1.25) /C−. Please note
that by the volume of the assay VA we understand the volume of
the PCR mix  of the eluate and reagents, ready to be split into com-
partments for PCR amplification. The volume of the actual sample
VS drawn from the source needs to be calculated for each particular
purification and isolation protocol and the composition of the PCR
kits.

As described above, the analysis of the result needs to be done
through numerical procedures based either on the Most Probable
Number method and Bayes’ formalism. Providing explicit analytical
equations for translating the raw result (K positive signals from N
compartments) should in general be possible, yet has not yet been
demonstrated. This is because the mathematics behind especially
the dependent scheme is quite involved. Here we can offer only the
formula for the estimate of initial concentration in the independent
scheme, based on Most Probable Number method [ESI]:

EI (CA) = v−1 ln
N

N − K
,

where v is the volume of a single compartment, N is the number of
compartments in the assay and K is the number of compartments
that yielded positive signal.

We  verified our methodology numerically using canonical and
grand canonical Monte Carlo simulations. The digital assays were
designed using the abovementioned expressions to deliver assess-
ment in the dynamic range (i) �1 = 102, (ii) �2 = 5 × 102 and
(iii) �3 = 103, which required N1 = 135, N2 = 660 and N3 = 1305
compartments in independent scheme and N1 = 112, N2 = 443 and
N3 = 802 compartments in dependent scheme. The assays described
satisfy the given requirements (Fig. 6).

3. Discussion

We  have discussed explicitly two  possible ways of the interpre-
tation of the result of a digital PCR assay that lead to the assessment
of the concentration of the analyte either in the sample or in the
source of the sample. The differences in the mathematical proce-
dures, including the use of dependent and independent random
variables, reflect the qualitative difference between these physical
quantities (i.e. the number of molecules, or concentration of the
analyte in the sample, and the concentration in the source).

We  have shown how the precision and dynamic range of digital
assays with respect to the estimates of concentration in the sam-
ple and in the source depend on each other and on the number of
partitions in the assay.

These characteristics allowed us to provide explicit formulas
for designing single-volume digital assays that provide assessment
of the initial concentration of the analyte within the requested

dynamic range and with required standard deviation of the
estimate, both in dependent and independent scheme. The math-
ematical algorithm presented is simple and could be used to tailor
digital tests for various applications.
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Fig. 6. Comparison of the performance of assays working in dependent (red) and independent scheme (blue). The test was  performed by means of Monte Carlo simulations.
The  assays are paired by the dynamic range (a,b show assays that cover dynamic range � = 102, c,d show assays covering � = 5 · 102, and e,f show assays covering � = 103).
(a–e)  The estimate of the concentration in the sample (equal to the number of molecules in the sample — dependent scheme) or in the source (independent scheme) as a
function of fraction of positive compartments. The concentration is given in units [1/v]. (b–d) The relative standard deviation of the estimated concentration. In each case,
the  assay working in independent scheme assesses concentration with higher standard deviation, which results the randomness of the actual of number molecules found in
the  sample for a given concentration in the source.
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