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Abstract

Background: Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA
sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via
qPCR is quantification cycle (Cq) standard curve quantification, which requires the time- and labor-intensive construction of
a Cq standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting
a model to data; however, current empirical model-based quantification methods are not as reliable as Cq standard curve
quantification.

Principal Findings: We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to
qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to
other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three
independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability
of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is
as reliable as Cq standard curve quantification for a variety of DNA targets and a wide range of concentrations.

Significance: We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are
designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sample
throughput, where construction of a standard curve is impractical.

Citation: Boggy GJ, Woolf PJ (2010) A Mechanistic Model of PCR for Accurate Quantification of Quantitative PCR Data. PLoS ONE 5(8): e12355. doi:10.1371/
journal.pone.0012355

Editor: Timothy Ravasi, King Abdullah University of Science and Technology, Saudi Arabia

Received April 7, 2010; Accepted July 15, 2010; Published August 30, 2010

Copyright: � 2010 Boggy, Woolf. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by National Institutes of Health grant U54-DA-021519, Michigan Economic Development Corporation and Michigan Technology
Tri-Corridor grant GR687, and a graduate fellowship from the National Institutes of Health Cellular Biotechnology Training Program. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gboggy@umich.edu

Introduction

Biological assays to measure DNA and RNA concentrations are

readily available in a laboratory environment, but are not yet

available in a portable assay format suitable for use in home-based

diagnostics or point-of-care diagnostics in resource poor settings.

Three key difficulties in developing portable DNA and RNA

assays are the size, complexity, and noise sensitivity intrinsic to

these assays [1]. For example, currently available microarray

assays require relatively large samples and complex sample

preprocessing. Additionally, several replicate microarray assays

are typically performed to compensate for the effects of

experimental noise. Quantitative PCR (qPCR) based techniques

represent an attractive option for portable DNA quantification as

these assays are readily performed in microfluidic environments.

However, the two most accurate qPCR approaches, quantification

cycle (Cq) standard curve calibration [2] and digital PCR [3], each

require multiple complex liquid-handling steps to generate and

measure a series of diluted samples.

Ideally, a portable qPCR assay would only require measure-

ments on a single undiluted sample. As has been suggested by

others, the shape of a single qPCR amplification curve should be

sufficient to uniquely determine initial DNA concentration in a

sample [4–8]. In practice, however, the available single-assay

qPCR analysis techniques have been less accurate than the gold

standard technique of Cq standard curve calibration [9].

Here we show that a 2-parameter mechanistic model of PCR,

called MAK2 (for Mass Action Kinetic model with 2 parameters),

quantifies DNA samples from a single qPCR assay as accurately as

Cq standard curve calibration, which requires multiple assays for

quantification. Because MAK2 is a mechanistic model rather than

an empirical model, quantifying qPCR data with MAK2 requires

no assumptions about the amplification effiency of a qPCR assay.

Furthermore, whereas Cq quantification uses a single datapoint in

the qPCR curve for quantification, MAK2 is fitted to measure-

ments across many amplification cycles, thereby reducing the

influence of detection noise on estimates of DNA concentration.

Results

MAK2 models the exponential growth phase of PCR
MAK2 describes the accumulation of amplicon DNA during

PCR. The model is derived from reaction kinetics in the anneal/

elongation steps of PCR, as is briefly discussed in Materials and

Methods and detailed in the online supporting document, Text S1.

MAK2 is expressed as:
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Dn~Dn{1zk ln (1z
Dn{1

k
) ð1Þ

where Dn can represent either the amount of double-stranded

DNA (dsDNA) after n cycles of PCR or the fluorescence associated

with dsDNA after n cycles of quantitative PCR. In equation (1), Dn

is recursively dependent on Dn{1, the amount of D from the

previous cycle. The characteristic PCR constant k determines the

rate of DNA accumulation during PCR. D0, and k are the only

two adjustable parameters that determine Dn values at every PCR

cycle. These parameters have distinct effects on the shape of the

MAK2 curve; changing the value of D0 shifts the curve right or left

while changing the value of k changes the slope of the curve, as

shown in Fig. 1.

MAK2 can be used for fitting qPCR fluorescence data when Dn

in equation (1) represents the fluorescence associated with dsDNA

at cycle n. There is often a background fluorescence in qPCR data

that is independent of signal associated with target. This

background fluorescence is due to fluorescence produced by the

reaction system itself (caused by plastics or reagents) [9]. In model-

fitting approaches to quantifying qPCR data, the fluorescence is

typically assumed to be composed of signal and a background

fluorescence [5,6,8,10,11]. Similarly, for MAK2-fitting of qPCR

data, fluorescence is background adjusted by the parameter, Fb as

follows:

Fn~DnzFb ð2Þ

where Fb represents constant background fluorescence and Fn is

the the MAK2-predicted fluorescence at cycle n, the variable used

for fitting qPCR fluorescence data.

Due to assumptions made in deriving MAK2 (see Materials and

Methods for a brief description or supporting Text S1 for more

detail), the model is applicable only to qPCR data obtained before

primer depletion and enzyme saturation are significant effects.

Therefore, in our use of MAK2, we have truncated the data to the

cycle with the maximum slope increase, relative to the previous

cycle (see Materials and Methods for more detail). Truncation of the

data to be fitted is justified (indeed necessary) based on mechanistic

considerations and not based on statistical classification of outliers

as in some qPCR model-fitting methods [6,8,10]. The region of

data over which MAK2 is applicable is often referred to as the

exponential growth phase of PCR. An example of an optimized fit

of MAK2 to qPCR data is shown in Fig. 2.

MAK2 predicts declining amplification efficiency
PCR amplification efficiency is often used as a parameter for

quantifying target DNA amount from qPCR data. Amplification

efficiency is defined on a cycle-by-cycle basis [5] as:

En~
Dn{Dn{1

Dn{1
ð3Þ

where D is fluorescence due to dsDNA. Applying the MAK2

expression (1) to the amplification efficiency expression (3) yields:

En~
k ln (1z

Dn{1

k
)

Dn{1
ð4Þ

From this expression, amplification efficiency is dependent on

DNA concentration, though not linearly as has been previously

proposed [8]. Furthermore, amplification efficiency monotonically

decreases as DNA concentration increases, in contrast with the

assumption that amplification efficiency is constant below the

quantification threshold. This assumption of constant amplifica-

tion efficiency has been the foundation for the development of Cq

quantification methods such as the relative quantification method

developed by Pfaffl [12]. In contrast to such quantification

methods, quantification by Cq standard curve calibration is

theoretically valid because it requires no assumptions about

PCR mechanism.

MAK2 fitting quantifies qPCR data as accurately as Cq

standard curve calibration
To determine how accurately MAK2 fitting performs relative to

other qPCR quantification methods, we analyzed three indepen-

dently generated qPCR dilution series by MAK2 fitting, Cq

standard curve calibration, exponential curve fitting [4], and

sigmoidal curve fitting with 4 and 5 parameter log-logistic

functions [11]. The resulting log-log plots of estimated vs. known

target amount are shown in the panels of Fig. 3. The first of the

three datasets, shown in Fig. 3A, was generated by the authors as

Figure 1. Simulated MAK2 curves with varying D0 and k values.
Curves are labeled with parameter values. Increasing D0 shifts the
MAK2 curve to the left, while increasing k increases the slope of the
MAK2 curve.
doi:10.1371/journal.pone.0012355.g001

Figure 2. Optimized fit of MAK2 (solid line) to data (points). The
gray inset depicts the full data range with the MAK2 fit overlaid. The
large curve is a blown up view of the white box in the inset.
doi:10.1371/journal.pone.0012355.g002
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described in Materials and Methods. The other two datasets used for

demonstrating MAK2 were chosen from datasets freely available

to researchers in the R package qpcR [13]. These datasets were

assumed to be representative of standard qPCR data because they

are included as example datasets in the qpcR package for the

purpose of demonstrating various model-fitting procedures for

quantification of qPCR data.

The plots in Fig. 3 demonstrate the equivalent performance of

MAK2 quantification and Cq standard curve quantification, and

the superior performance of these two methods relative to other

model-fitting quantification methods. The third most accurate

quantification method was different for each dilution set,

indicating how variable the predictions made by these methods

can be. Note that quantification by the Cq standard curve requires

the entire dilution series, while estimates made by the other four

quantification methods are based on single qPCR runs at each

dilution.

Discussion

We have demonstrated that fitting qPCR data with a 2-

parameter mechanistic model of PCR, MAK2, quantifies single

qPCR assays as reliably as Cq standard curve calibration for a

variety of target sequences and a wide range of concentrations. In

contrast, quantification by fitting qPCR data with an empirical

model, such as an exponential curve or a sigmoidal curve, is not as

reliable and accurate quantification is strongly dependent on PCR

conditions used.

Empirical model-fitting methods, such as sigmoidal or expo-

nential curve-fitting, fail to reliably quantify qPCR data because

they are unable to accurately describe amplification efficiency in

early cycles of qPCR where the fluorescence signal is dominated

by noise. The model-predicted behavior in these early cycles

depends on assumptions about amplification efficiency implicit in

the model. For example, fitting qPCR data with an exponential

curve implies that amplification efficiency observed in the log-

linear region of the qPCR curve is constant through all early PCR

cycles while fitting with a sigmoidal curve implies that early cycle

amplification efficiency follows a sigmoidal trend. Because these

assumptions are not consistent with the mechanism of PCR,

empirical model predictions are less reliable than predictions made

by mechanistic models such as MAK2.

The two parameters in MAK2, D0 and k, are sufficient to

accurately describe complex PCR behavior for early cycles of

qPCR, where effects such as primer depletion or polymerase

saturation can be neglected. The initial target DNA concentration,

D0, determines where the fluorescence signal rises above noise.

The parameter k, represents the ratio of primer binding and DNA

reannealing rate constants and dictates how amplification

efficiency changes at every cycle with increasing DNA concentra-

tion. While k should theoretically remain constant for a given

amplicon sequence and primer set, fitting with MAK2 revealed

that this is not always the case (see supporting Fig. S1). The

observed variation in k may indicate the presence of unexplained

qPCR effects, but further study is needed to determine its

significance.

Figure 3. Assessment of quantification accuracy for five quantification methods on three independent datasets. Datasets (rows A–C
with n = 2, n = 20, and n = 4 replicates per concentration, respectively) were quantified by five methods (in columns) as follows: MAK2: model-fitting
with MAK2; Cq : Cq standard curve calibration; Exponential: exponential curve-fitting [4]; 4-Parameter Sigmoid: sigmoidal curve-fitting (SCF) with a 4-
parameter log-logistic function [11]; 5-Parameter Sigmoid: SCF with a 5-parameter log-logistic function [11]. Each dataset is from a different target
sequence diluted sequentially by ten-fold to obtain data from a concentration range of six orders of magnitude. Panels in the figure contain log-log
plots of estimated vs. actual number of template molecules. The line at 450 in each plot represents the line of agreement between prediction and
known amount. Rows are labeled with the source of the data. Dataset S1, from experiments performed by the authors, is published online.
doi:10.1371/journal.pone.0012355.g003
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MAK2 is the first mechanistic model of PCR suitable for

quantifying qPCR data generated with either nonspecific dyes or

specific probes. A mechanistic model of specific probe binding has

been developed and used for quantifying qPCR data generated by

hydrolysis probes [7]. Detailed mechanistic models of PCR have

also been developed and used in simulating PCR [14,15],

however, these models contain many more parameters than

MAK2 and attempting to use these models for fitting qPCR data

results in data overfitting and non-unique solutions for key

parameters such as D0. The three parameters used for fitting

MAK2 to qPCR data (k; D0; and background fluorescence, Fb)

each affect the simulated MAK2 curve in orthogonal ways, so that

fitting with MAK2 ensures a unique solution for the optimal

parameter set.

The approach used in this work reflects a broader trend in

systems biology of trading assay complexity for software

complexity. As a well-known example, shotgun sequencing enables

sequencing of large DNA segments using simplified experimental

methods by shifting complexity to sequence reconstruction

software. Similarly, the MAK2 approach enables accurate DNA

quantification using significantly less complex experimental

methods by carrying out a more complex, mechanistic software

analysis. As a result, MAK2 provides a robust single assay method

for DNA quantification, overcoming a significant hurdle in the

development of a portable nucleic acid assay system.

Materials and Methods

Derivation of MAK2 from PCR mass action kinetics
MAK2, expressed as equation (1), results from applying a series

of assumptions to an ideal PCR system. We define the ideal PCR

system as one in which the following assumptions can be made:

1. Errors occurring during PCR can be neglected

2. The complementary DNA strands S1 and S2 can be treated

identically as S

3. PCR primers for S1 and S2, P1 and P2 respectively, can be

treated identically as P

4. Off-target effects of PCR primers can be neglected

5. Thermally-induced degradation of DNA polymerase can be

neglected

6. Strand elongation is considered as a single step, rather than as a

series of single nucleotide additions

7. Reactions occurring during the anneal/elongation phases of

PCR go to completion

8. All double-stranded DNA melts at the high temperature step of

PCR

As a result of assumptions 1–6, the mass action kinetic model for

the anneal/elongation phases of PCR in an ideal PCR system is:

SzP
K1

PS ð5Þ

PSzE
K2

PSE {�?kext
DzE ð6Þ

SzS {�?
kb

D ð7Þ

where equation (5) describes equilibrium formation of the primer-

strand complex (PS), equation (6) describes the irreversible

production of new DNA following the equilibrium complexation

of DNA polymerase (E) with PS, and equation (7) shows the

rehybridization of complementary DNA strands that competes

with production of new DNA.

We now assume that primer and DNA polymerase are in excess.

This assumption is heretofore referred to as the ‘‘non-limiting

assumption’’ because the amounts of primers and polymerase do

not limit the rate of the elongation reaction. The polymerase and

primer kinetic contributions to the model can thus be neglected

and equations (5) and (6) are simplified to:

S {�?ka
PSE {�?kext

D ð8Þ

Because the kinetics of DNA polymerization are slow relative to

the kinetics of PSE formation and DNA reannealing, it can be

assumed that PSE formation and DNA reannealing are

competing reactions and that any PSE that forms is converted

to dsDNA by the slow acting DNA polymerase. The final form of

the mechanistic model, from which MAK2 is derived, is thus:

S {�?ka
D ð9Þ

SzS {�?
kb

D ð10Þ

where equations (9) and (10) describe the competition between a

first-order reaction for strand synthesis and a second-order

reaction for rehybridization, respectively.

Following the anneal/elongation phases of PCR, double-

stranded DNA is melted to single-stranded DNA at the high

temperature of PCR. As a result of assumptions 7 and 8, the

transition between cycles at the high temperature step can be

modeled as:

Sn,t~0~2 �Dn{1,t~tend
ð11Þ

where the single-stranded DNA at the beginning of cycle n is equal

to double the amount of double-stranded DNA at the end of the

previous cycle. Equation (11) thus allows the model output for a

cycle to be fed in as an initial condition to model the next cycle.

A more detailed description of mass action kinetic assumptions

and the full mathematical derivation of MAK2 are included in the

online supporting document, Text S1.

Justification of assumptions made in the derivation of
MAK2

Following the development of any theoretical model of a

process, the validity of the assumptions made in formulating that

model must be analyzed in order to ensure that the foundation of

the model is on solid ground. Here, we justify each assumption

made in deriving MAK2, beginning with the non-limiting

assumption which asserts that primers and polymerase are in

excess and do not limit the rate of reaction.

The non-limiting assumption is valid for early cycles of PCR

before target DNA concentrations rise to concentrations compa-

rable to those of polymerase and primers. When DNA

concentrations rise to the level of polymerase, the enzyme

becomes saturated and cannot efficiently process new strands of

DNA. When DNA concentrations rise to the level of primers, the

forward process in equation (5) is no longer favored over the

Mechanistic PCR Quantification
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reverse process and the effects of changing primer concentration

must be considered. A much more complex model is necessary for

modeling PCR when primers and polymerase are limiting,

because reaction kinetics change dynamically in response to

changes in primer and polymerase concentration. The limiting

effects of primers and polymerase contribute to late-cycle PCR

behavior, such as the onset of the plateau phase of PCR where

very little new DNA is generated. MAK2 is therefore only

applicable to early cycles of PCR where limiting effects of primers

and polymerase can be neglected.

As will become evident, the non-limiting assumption provides

critical justification for all other assumptions made in the

derivation of MAK2 except assumptions 1 and 8. While the

validity of assumptions 2–7 coincides with validity of the non-

limiting assumption, assumptions 1 and 8 are valid for all cycles of

PCR.

Assumption 1: Errors occurring during PCR can be

neglected. This assumption is valid when using a non-error

prone polymerase. Most commercially-available DNA polymerases

used for quantitative PCR have low rates of introducing wrong

bases (errors) into DNA product. Error prone polymerases that

introduce errors to DNA product (useful in methods such as

directed evolution) should not be used for quantitative PCR.

Assumptions 2 and 3: PCR primers and target strands

can be treated identically. These assumptions follow from the

assumption that both primers are in excess (thus favoring PS
formation over PS dissociation by Le Châtelier’s principle) and

the assumption that the forward rate for primer-substrate

hybridization is independent of sequence (see references [14,15]).

Secondary structure in target strands and primers may affect the

dynamics of primer hybridization differently for each target

strand, so that target strands act differently during the course of

the reaction. Although secondary structure can hinder primer

hybridization, the excess amount of primer will still drive primer

and strand toward PS formation by Le Châtelier’s principle.

Given the assumption that all reactions go to completion

(assumption 7, which follows from the non-limiting assumption),

all single-stranded DNA will end up as double-stranded DNA at

the end of the cycle, and both target strands can therefore be

treated identically at the end of each cycle, which is the time-point

modeled by MAK2.

Assumptions 4 and 5: Primer off-target effects and

polymerase degradation can be neglected. These assumptions

follow from the non-limiting assumption. If primers are in excess,

removal of free primer by off-target hybridization will not have a

noticeable effect on the reaction dynamics. Likewise, if polymerase is in

excess, a small amount of thermally-induced degradation will not have

a noticeable effect on reaction dynamics.

Assumption 6: Strand elongation can be considered as a

single step. This assumption follows from the assumption that

all reactions go to completion (assumption 7, which follows from

the non-limiting assumption). If the elongation process goes to

completion, there are no partially elongated strands remaining at

the end of the elongation step of PCR. Therefore, it is unnecessary

to treat elongation as the series of single nucleotide additions that it

is in reality, and elongation can be approximated as a single step.

Assumption 7: Reactions occuring in the anneal/elongation

phases go to completion. This assumption follows from the non-

limiting assumption because when primers are in excess, any single-

stranded DNA that does not reanneal to form dsDNA will form PS
through primer hybridization (PS formation is favored over PS
dissociation by Le Châtelier’s principle); and because the polymerase

is not saturated with PS substrate, it is able to complete the

elongation reaction during the elongation phase of PCR. Because

the elongation reaction is the rate-limiting step in the production of a

new strand of DNA, all other reactions can be assumed to go to

completion.

Assumption 8: All double-stranded DNA melts at the high

temperature step of PCR. This assumption allows the starting

amount of ssDNA for cycle n to be related to the amount of

dsDNA after cycle n-1, providing the link between consecutive

cycles. This assumption is valid when the high temperature step of

PCR incubates the reaction at a temperature much higher than

the melting temperature of the target DNA for a sufficient amount

of time. Using the protocol for the high temperature step suggested

by the polymerase manufacturer is likely sufficient for this

assumption to be valid.

Practical implications of the non-limiting assumption for

PCR analysis. One consequence of the non-limiting assumption

is that the actual concentrations of primer and polymerase are

irrelevant to quantification by MAK2. This attribute of MAK2 is

beneficial because enzyme manufacturers typically provide

polymerase concentrations in terms of arbitrary units instead of SI

units, so that modeling concentration dependent behavior of

polymerase can be difficult.

Another consequence of the non-limiting assumption is that

MAK2 is applicable to fitting a limited amount of qPCR data. The

slope of a qPCR curve initially increases with each cycle until an

inflection point is reached, at which point the slope gradually

decreases until it is flat. MAK2, on the other hand, predicts that

the slope of the qPCR curve increases constantly. This can be seen

if equation (1) is rewritten as:

Dn{Dn{1~k ln (1z
Dn{1

k
) ð12Þ

to obtain the first-derivative of D with respect to cycle. The

expression on the right-hand side increases monotonically with

increasing values of Dn{1. Because MAK2 does not predict an

inflection point in the qPCR curve, it is no longer an accurate

model when the inflection point is reached in qPCR data. Analysis

of qPCR data reveals that the inflection point is reached soon after

the maximum slope increase occurs. Thus, we have used the cycle

with the maximum slope increase, relative to the previous cycle, as

the cutoff point for MAK2-fitting. Experimenting with various

cutoff cycles has indicated that setting the cutoff one or two cycles

above or below this cycle does not significantly affect MAK2

concentration predictions.

Quantitative PCR data
qPCR assays. Quantitative PCR assays shown in Fig. 3A

were performed by the authors in 25 mL samples on an MJ

Research (BioRad) Chromo4 thermal cycler. Reaction buffer was

composed of 0.1 units/mL HotStart Paq5000 DNA Polymerase

(Stratagene, La Jolla, CA) in the supplied reaction buffer, 0.2 mM

of each dNTP (Promega, Madison, WI), 2 mM of the dsDNA dye

SYTO-13 (Invitrogen, Carlsbad, CA) and 400 nM of each primer.

The inital DNA concentration used in these qPCR dilution series

experiments ranged from 5*103 to 5*108 copies per well in 10-fold

increments. Assays for each concentration were run in duplicate.

The thermal cycling protocol contained a two-minute incuba-

tion period at 95.00C followed by forty cycles with a 20s

incubation at 95.00C and a 60s incubation at 64.00C with 4 plate

reads obtained at 15s intervals. A melt profile was obtained after

the 11th cycle and again after every third cycle thereafter (for a

total of 10 melt profiles). The melt profile consisted of plate reads

obtained after a 5s incubation at temperatures ranging from 79.0

Mechanistic PCR Quantification
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to 83.80C in 0.20C increments, and reads at 84.0, 84.5, and 85.00C

obtained after a 10s incubation.

The target DNA was a synthetic sequence designed by

generating a random sequence and minimizing secondary

structure and off-target primer binding by modifying the sequence.

Secondary structure and off-target primer binding were identified

and their thermodynamic properties were calculated using Visual

OMP software from DNA Software (Ann Arbor, MI). Primer and

target DNA were obtained from Integrated DNA Technologies

(Coralville, IA). Primer and target DNA sequences are published

in online supporting data as Table S1. Raw data are also provided

as supporting data, Dataset S1.

Independent qPCR dilution data sets. In addition to the

dataset generated as described above, two additional data sets

were used in the comparison of quantification methods shown in

Fig. 3. These datasets were obtained from the rutledge (row B in

Fig. 3) and reps (row C in Fig. 3) datasets in the R package qpcR

[13]. The rutledge dataset is from Supplemental Data 1 of [6] and

contains data from six 10-fold dilutions of a 102-bp sequence

generated in five independent experiments with four replicates

each.

The reps dataset is an unpublished dataset that contains seven

10-fold dilutions of an S27a housekeeping gene target, with four

replicates each. Quantification of the most dilute condition of the

reps dataset was not used for comparison because inclusion

significantly affected R2 values obtained for the three methods

that most accurately quantified this data. The values plotted in

Fig. 3 for the rutledge and reps datasets are relative values, scaled for

comparison to our data, generated as described above.

Quantification of qPCR data
The quantification plots in Fig. 3 depict the accuracy of

quantification by the various methods. To generate these plots,

quantification metrics D0 or Cq were generated as described in the

sections below. Next, the best fit linear relationship between

log(D0) and log(N0) (where N0 is the initial amount of target

DNA) or between Cq and log(N0) was found by linear model-

fitting (function LinearModelFit) in Mathematica. Finally, the trend

equation was then used to calculate an estimated N0 for each

known N0. The plots in Fig. 3 are log-log plots of estimated vs.

known N0.

MAK2 model-fitting. The parameters in the MAK2 model

were fit using custom developed Mathematica code in online

supporting data, Dataset S2. This dataset also contains results of

fitting qPCR data with MAK2. The D0 values obtained were used

in generating plots for MAK2 quantification shown in Fig. 3.

The sum of squared residuals was used as a cost function for

optimization. Each iteration of optimization tested values for

parameters D0, k, and Fb by performing a simulation of MAK2

with these values and calculating the associated cost function

value. Parameter values resulting in the minimum cost function

value found in 5000 iterations of Nelder-Mead optimization were

considered the correct parameter set. Additional optimization

iterations yielded no significant improvement in data fit.

The data included for optimization was truncated to the cycle

with the maximum slope increase, relative to the previous cycle.

Values for slope (equivalent to the first derivative with respect to

cycle) were obtained by subtracting fluorescence at the previous

cycle from the current fluorescence. Values for slope increase

(equivalent to the second derivative with respect to cycle) were

obtained by subtracting the previous cycle’s slope value from the

current cycle’s slope value.

Quantification cycle (Cq) determination. To generate Cq

values, first a quantification threshold was chosen that represented

about 10% of the maximum signal achieved in a dataset (0.1 for

our data, 0.05 for rutledge data and 1 for reps data). Background

intensity was determined as described above for determining data

to include in MAK2 model-fitting. The Cq was calculated as the

fractional cycle (linearly interpolated) where (intensity -

background intensity) was equal to the quantification threshold.

Code for calculating Cq and results are published online as

supporting data, Dataset S3. The Cq values in Dataset S3 were used

in generating plots for Cq quantification in Fig. 3.

Exponential model-fitting. The exponential function for

fitting qPCR data is:

Fn~D0 � EnzFb ð13Þ

where Fn is the fluorescence intensity at cycle n, Fb is background

fluorescence, E is the constant amplification efficiency of the

reaction, and D0 is the initial fluorescence.

Data were fit with equation (13) using nonlinear model-fitting

(NonlinearModelFit function) in Mathematica. The data used for

fitting was the minimum amount of data (beginning with cycle 1)

that resulted in a nonlinear fit of the data. Results are published

online as supporting data, Dataset S4. The D0 values in Dataset S4

were used in generating plots for quantification by exponential-

fitting in Fig. 3.

Fitting with log-logistic models. The equation for the five-

parameter log-logistic function is:

Fn~Fbz
Fmax{Fb

(1zeq�(log(n){log(r)))s ð14Þ

where Fn, Fb, and Fmax are the fluorescence at cycle n,

background fluorescence, and maximum fluorescence,

respectively; and parameters q, r, and s adjust the shape of the

curve. The logistic model is identical to the log-logistic model in

equation (14) except the (log(n){log(r)) term is replaced by

(n{r). Parameter s in equation (14) accounts for asymmetry in

qPCR data and the four-parameter model is a special case of the

five-parameter model, where s~1. The first reported sigmoidal

model for quantifying qPCR data [5] was a 4-parameter logistic

model. Spiess et al. found that log-logistic models often perform

better at data-fitting than logistic models [11], so 4 and 5-

parameter log-logistic functions were used in our comparison of

quantification methods.

Fitting data with four and five-parameter log-logistic functions

was performed in the R package qpcR. The function pcrbatch was

used for batch fitting an entire dataset and the value for sig.init2

was used for estimating the initial fluorescence for each run. This

estimate is generated by fitting qPCR data with the log-logistic

model and then fitting the log-logistic model with the exponential

model in (13) to find D0.

Supporting Information

Text S1 Derivation of MAK2.

Found at: doi:10.1371/journal.pone.0012355.s001 (0.26 MB

PDF)

Figure S1 Dependence of k on D0 for the three datasets used.

The plots show k vs. log(D0), for the three different datasets,

following optimization of MAK2 to the data.

Found at: doi:10.1371/journal.pone.0012355.s002 (0.21 MB

TIF)

Table S1 A table of sequences used for the qPCR experiments

performed in the authors’ lab.
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Found at: doi:10.1371/journal.pone.0012355.s003 (0.01 MB

XLS)

Dataset S1 Original dilution series data from the authors’ lab.

Found at: doi:10.1371/journal.pone.0012355.s004 (0.03 MB

XLS)

Dataset S2 Data resulting from fitting raw qPCR data with

MAK2. D0 values obtained were used in generating figure 3.

Found at: doi:10.1371/journal.pone.0012355.s005 (1.33 MB

PDF)

Dataset S3 Cq values obtained for the qPCR data. These Cq

values were used in generating figure 3.

Found at: doi:10.1371/journal.pone.0012355.s006 (0.11 MB

PDF)

Dataset S4 Data resulting from fitting raw qPCR data with an

exponential model. D0 values obtained were used in generating

figure 3.

Found at: doi:10.1371/journal.pone.0012355.s007 (1.38 MB

PDF)
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