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18.1  Introduction

There is a growing interest in life science research in the use of expressed transcripts that form 
the basis of biological markers (biomarkers) and in addressing some of the challenging statistical 
issues that arise when attempting to validate them. Biomarkers have extensively been used across 
diagnostic and therapeutic areas of many life science disciplines, including clinical, physiological, 
biochemical, developmental, morphological, and molecular applications.1 Biomarkers have been 
defined as “cellular, biochemical or molecular alterations that are measurable in biological media 
such as human tissues, cells, or fluids.”2 The official definition, developed by the “Biomarkers defi-
nitions working group” of the NIH is3: “A biomarker is a characteristic that is objectively measured 
and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention.” More recently the definition has been broadened to include 
more biological characteristics that can be objectively measured and evaluated as a biological indi-
cator.4 A biomarker can refer to any measurable molecular, biochemical, cellular, or morphological 
alternations in biological media such as human tissues, cells, or fluids.5

18.1.1  Biomarkers at Various Molecular Levels

Advances in genomics, proteomics, transcriptomics, and metabolomics have generated many candi-
date biomarkers with the potential for diagnostic and clinical value. Current efforts are focused on 
biomarker discovery, reliable detection, and early diagnosis, for example, in cancer biology through 
the application of various–omics technologies. The success of biomarker identification depends on 

18

Contents

18.1	 Introduction........................................................................................................................... 259
18.1.1	 Biomarkers at Various Molecular Levels.................................................................. 259
18.1.2	 Biomarkers at the mRNA Level................................................................................ 261
18.1.3	 Biomarkers at the miRNA Level............................................................................... 261

18.2	 miRNAs as Biomarkers in Surveillance of Illegal Use of Anabolic Steroids....................... 262
18.3	 Technical Challenges in miRNA Biomarker Research......................................................... 263
18.4	 Bioinformatics....................................................................................................................... 263

18.4.1	 Hierarchical Cluster Analysis.................................................................................... 263
18.4.2	 Principal Components Analysis................................................................................264

18.5	 Software Tools.......................................................................................................................266
18.6	 Conclusion............................................................................................................................. 267
References....................................................................................................................................... 267

K12140_C018.indd   259 3/11/2013   4:31:16 PM



260 PCR Technology

many factors, such as the type of molecule (e.g., gene, transcript, protein, metabolite), the intensive 
validation across a heterogeneous population and its variations (age, sex, species, breed), the quality 
and integrity of the biological sample, the size of the dataset(s) used, and the statistical methods that 
were applied for validation. Probably the most significant factor leading to success is the number 
of variables and conditions being tested, because, what appears to be specific in a given biological 
dataset may not necessarily be so in a larger set or even in the entire population. Therefore, the more 
conditions and variables being evaluated; the better will be the outcome of the prediction and the 
validity of the discovered biomarkers.6,7

The integration of different technologies on various–omics levels for data collection and their 
analyses are pivotal for biomarker identification, characterization, validation, and successful usage. 
The application of integrative functional informatics represents a novel direction in such biomarker 
discovery and brings a new dimension to molecular diagnostics.1 These markers can represent the 
combination of multiple pieces of information on various biological levels, such as genes, their 
mutations, SNPs, gene methylation pattern, alternative gene transcripts (mRNA and miRNA), 
posttranslational modified proteins, metabolites, morphological changes, or altered physiological 
responses.

The first step in all biological and physiological processes is the transcription of specific genes 
into mRNAs and noncoding RNAs as prerequisite for the generation of functional proteins. Gene 
expression is a dynamic process that adapts rapidly to physiological changes or exogenous stimuli 
and thus the transcriptome with its enormous number of alternative spliced mRNAs, large and small 
noncoding RNAs reflects the current physiological situation in different tissues, organs, and even in 
single cells.8 Therefore, monitoring the transcriptome is, potentially, a very promising approach for 
detecting biomarkers for specific physiological situations, diseases, or treatments.

Further biomarkers can be discovered at the level of the proteome and the metabolome. To 
investigate the complex proteome, applied proteomic technologies are used to separate, identify, 
and characterize a global set of proteins. In addition, information should be provided about the 
protein concentration, tissue, or cellular location, any modifications or functional attachments, 
and interactions, for example, protein–protein, protein–DNA, or protein–ligand.9 The proteome, 
unlike the “fixed” genome, possesses an intrinsic complexity and is in a constant state of flux. 
The benefit of protein analysis is the ability to take into account posttranslational modifications, 
which can markedly alter the function, activity or half-life of a protein. In addition, the final 
amount of the active protein can differ greatly from the initial amount of mRNA transcribed 
and present in the cell.

Metabolomics is a relatively new discipline that can facilitate rapid in vivo screening of vari-
ous factors, including drug efficacy and/or toxicity and underlying physiological processes. The 
metabolomic approach is complementary to the other–omic profiling technologies and can provide 
a chemical and biochemical profile of a specific body fluid, organ, or tissue during a continuous 
time-course analysis.9 Overall, metabolomics can facilitate the determination of metabolic profiles 
and the mapping of interactions between metabolic pathways across organisms.

As described, there are various ways to discover biomarkers: at the level of the genome, 
transcriptome, proteome, or metabolome. Herein, we will focus on biomarkers identified in the 
transcriptome at the RNA level, with the current focus on mRNA and miRNA. Each gene has 
its set of characteristic expression profiles and alternative splice variants, that is, in which cells 
or tissues and at what time it is expressed and how it responds to environmental stimuli. For 
research and biomedical purposes, only a few genes may be sufficiently reliable to be used 
as indicators of healthy or diseased biological states.7 Approaches centered on transcriptomics 
consist of various methods to measure the expression of genes, including microarray analysis, 
RT-PCR-based methods or holistic assumption-free methods such as next-generation sequenc-
ing technologies.10,11 Quantitative RT-PCR and microarray-based analysis have significantly 
expanded the throughput of expression studies, and numerous examples of potential microarray-
based biomarkers have been published.12–14

K12140_C018.indd   260 3/11/2013   4:31:17 PM



261Biomarker Discovery via RT-qPCR and Bioinformatical Validation

18.1.2  Biomarkers at the mRNA Level

There are different methods available to quantify single transcripts. In general, these methods 
differ in the number of quantifiable genes. Northern blot is the classical approach for the detection 
of different mRNAs. A more precise method for the quantification of gene expression is quanti-
tative real-time RT-PCR (RT-qPCR). With both methods it is possible to quantify single genes 
or multiple gene sets in one run. Using qPCR arrays, up to 384 different transcripts can be ana-
lyzed in parallel. There are also other methods available for a holistic screen of gene-expression 
changes. Until recently, microarray analysis has been the screening method of choice for most 
gene-expression experiments at the mRNA and miRNA level. With this approach, a sample can 
be screened for the expression of all known transcripts present in the gene database. But how can 
new, unknown genes, alternative splice variants, or miRNA intermediates be measured? RNA 
sequencing (RNA-Seq) is a new method which permits the sequencing as well as the quantifica-
tion of the whole transcriptome of a biological sample. It is a very sensitive approach; a single 
transcript of a given gene is detectable, and since it is assumption-free it is also possible to dis-
cover new transcripts or unknown splice variants.10,11

The application of transcriptomics to biomarker research has successfully been used in vari-
ous fields of life science. In molecular medicine, it has been shown that changes in the expression 
pattern of specific genes are indicative of different pathological processes. It is also possible to 
distinguish between different types and stages of diseases, for example, various forms of cancer, 
heart disease, neuropsychiatric disorders, and the causes of infertility.8,14 Another application in 
molecular medicine is pharmacogenomics, the analysis of gene expression to predict the response of 
a patient to treatment with specific drugs, thus enabling the choice of the most appropriate treatment 
for each individual patient.8,15

The use of gene-expression biomarkers for the detection of specific, external stimuli is a 
further field of application. Our group is interested in the misuse of drugs for growth-promot-
ing purposes in human sports and animal husbandry. There are numerous reports about gene-
expression changes caused by the use of anabolic substances in different tissues and species. 
In cattle, several promising candidate genes have been proposed for the detection of the mis-
use of anabolic substances; IGF-1, for example, has highly abundant expression in liver and 
muscle.16–19 A further group of promising candidate genes are the receptors for specific sub-
stances, for example, the steroid hormone receptors or the β-adrenergic receptors in different 
tissues.20–22 A lot of promising organs for biomarker discovery after hormone application have 
been reported: for example, uterus, ovary, prostate, vaginal epithelial cells, liver, muscle, and 
blood.23–29 Most of these tissue samples have to be taken at the slaughterhouse or in the surgery 
room. In human sports, there is only a limited number of tissues available to trace the misuse of 
anabolic substances, for example, blood, urine, and hair. However, there are also reports regard-
ing gene expression in human hair follicle cells and primate blood, suggesting that analysis of 
gene-expression changes caused by anabolic substances is feasible in humans.27,29,30 All these 
examples demonstrate the potential of biomarker research at the mRNA level in different veteri-
narian and human research fields.

18.1.3  Biomarkers at the miRNA Level

miRNAs are small, regulatory RNA molecules that are involved in the regulation of mRNA 
expression and hence influence almost all physiological processes and metabolic pathways.31 
Dysregulation of miRNAs could be correlated with several different human pathologies, for exam-
ple, diabetes, liver disease, or human cancer.12,32−34 In this context, recent studies have revealed 
that specific miRNAs could be “the” upcoming biomarkers in clinical diagnostics. miRNAs show 
good suitability for biomarker research as they appear to be expressed in a developmental, disease, 
and tissue-specific manner, which is not the case for other established biomarkers. In contrast 
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to mRNAs, miRNAs are more stable35 and less sensitive to RNAse exposure and, besides the 
transcriptional processing forms, from primary miRNA (pri-miRNA) to pre-miRNA to mature 
miRNA, no further modifications have been described. In contrast to the possibility of mRNA 
splice variants occurring from a single gene, for the mature miRNA no variants of the same mol-
ecule are known, thus facilitating accurate detection.13,36 In cancer diagnostics, expression profiles 
of the so-called “oncomirs” (miRNAs, which are implicated in the formation of malignancies) 
have already proved their superiority over mRNA profiles.37,38 For example, Lu and coworkers12 
were able to discriminate gastrointestinal cancer tissue from nongastrointestinal cancer tissue by 
characterization of specific miRNA profiles. This was not possible when screening the same bio-
logical samples for around 16,000 mRNAs. Besides diagnosis, screening of miRNA expression 
gives exceptional insights in to disease progression, for example, differentiation stages, develop-
mental lineage of tumors, or response to therapy.36,38

miRNAs have also been discovered as circulating cell-free nucleic acids in the body fluids 
(e.g., blood, breast milk) of healthy and diseased individuals.39–42 In addition, levels of circulating 
miRNAs in plasma have been linked to cancer (e.g., prostate, B-cell lymphoma) and other dis-
eases (e.g., inflammatory bowel disease).43–45 Mitchell et al.43 showed that it is possible to identify 
prostate cancer patients by measuring the plasma levels of miR-141. In B-cell lymphoma, miR-21 
was proposed as a promising biomarker because its serum abundance appears to be associated 
with patients’ survival.44 In blood, miRNAs are thought to be secreted from normal or tumor cells 
in microvesicles.40 These findings could pose a breakthrough in the field of medical diagnostics 
as this would offer a possibility for prognostic information and early disease detection that is of 
minimal invasion.

Most studies that address circulating miRNAs as disease markers are targeting those that are 
originating from tumor cells as secretory products. However, these could also have physiological 
and regulative functions. For example, a notable number of miRNAs, which are known to play 
important functions in the immune system are found in breast milk (e.g., miR-155, miR-181a, miR-
181b).46,47 It is believed that miRNAs together with other immune-related agents contained in breast 
milk, like IgA and leucocytes, are responsible for the development of the immune system of the 
newborn baby by influencing the intestine.41 Even though the underlying processes are not yet clari-
fied, once more, the positive effect of breastfeeding for the health of the offspring can be supported 
by those observations.

18.2 � miRNAs as Biomarkers in Surveillance of Illegal Use 
of Anabolic Steroids

Even though the most common field of interest concerning miRNAs lies in human medical 
research, the concept of establishing biomarkers has also been introduced into veterinary medi-
cine, for example, in the surveillance of illegal use of steroidal growth promoters.19,24–27 Steroid 
hormones are known to alter gene expression and might also influence the expression of miR-
NAs. Recently, an innovative study investigated the effects of the anabolic combination of tren-
bolone acetate plus estradiol on miRNA abundance in bovine liver.48 miRNA RT-qPCR arrays 
for gene-expression screening followed by statistical validation of results established an expres-
sion profile characterized by an upregulation of miR-29c, miR-130a, and miR-103 and a down-
regulation of miR-34a, miR-181c, miR-20a, and miR-15a. Using principal components analysis  
(PCA) as the biostatistical method of choice for pattern recognition (see Chapter 16), a sepa-
ration on the basis of the miRNA expression profile between the untreated control group and 
treatment group could be shown. The significance of the group separation can be maximized, 
when integrating additionally significant mRNA expression results together with the miRNA.48 
It can be seen from these results, that the combination of gene expression results from mRNA 
and miRNA might be an upcoming integrative approach to use for the specific generation of 
gene-expression patterns as biomarkers for anabolic treatment screening.
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18.3 T echnical Challenges in miRNA Biomarker Research

RT-qPCR is the current gold standard for sensitive and reproducible miRNA gene-expression analy-
sis. It is also established as the method of choice for validating results from holistic approaches, such 
as high-throughput sequencing (e.g., NGS), microarrays, or PCR array experiments.36,49 However, 
the nature of miRNA molecules poses a challenge for reliable analytics.

The combination of short length of mature miRNAs (~22 nt) and a heterogeneous GC content 
poses a challenge for cDNA synthesis and primer and probe design since these results in significant 
difference in the melting temperatures of different miRNAs.

The sequence of interest is not only present in the mature miRNA, but also in the precursor 
sequences, the pri-miRNA and pre-miRNA.

The members of one miRNA family (e.g., let-7 family) usually differ by just one nucleotide, 
mostly at the 3′ end of the sequence.

There are no specific guidelines for miRNA expression data analysis and normalization.
Strategies to deal with those challenges have been published and are being intensively discussed 

(summarized in refs.35,36,49–51). Not only are the properties of the molecule challenging for estab-
lished technical procedures, but also sample matrices pose additional problems. Especially in 
clinical research, patient samples (e.g., tumor samples) are frequently available as formalin-fixed 
paraffin-embedded (FFPE) tissues. From mRNA expression studies it is known that this type of tis-
sue conservation is challenging because RNA from FFPE tissue is often cross-linked or degraded. 
Also, qPCR efficiency could be inhibited by formalin fixation.52,53 Fortunately, various studies show 
that, in contrast to mRNAs, miRNAs seem to be less affected and more stable. Specialized extrac-
tion kits for FFPE samples could be used for miRNA expression analysis and reliable qPCR results 
could be gained.53,54 Also, sample preparation from blood to perform RT-qPCR analysis of circulat-
ing miRNAs is challenging. Therefore, specified RNA isolation protocols and optional pre-ampli-
fication steps are required to deal with the low amounts of miRNAs present in plasma or serum. 
Additionally, inhibitors of qPCR present in blood (e.g., albumin) must be removed. An established 
method for analyzing cell-free miRNAs in plasma and serum is presented elsewhere.42

18.4  Bioinformatics

As already mentioned, there is no single gene-expression biomarker for any given disorder or clini-
cal situation. In most cases, multiple biomarkers must be present to distinguish between specific 
diseases, disease states, or treatments, hence a biomarker pattern consisting of various mRNA and 
miRNA transcripts, must be available. An important question is how to deal with these data to 
get the desired information. The best way seems to be the construction of clusters using meth-
ods for dimension reduction combined with pattern recognition technologies to visualize the gene-
expression pattern in two- or three-dimensional graphs.25,46 There are different multivariate analysis 
methods available, which are used for biomarker selection and validation, namely hierarchical clus-
tering analysis (HCA) and PCA.

18.4.1 H ierarchical Cluster Analysis

The most popular method for the visualization of gene groups or treatment patterns is hierarchical 
clustering. An advantage of hierarchical clustering compared to the direct visualization methods 
is that a high dimensionality of the data set, represented by a large number of genes and samples, 
is reduced to a convenient two-dimensional representation of subject similarities.55,56 HCA is 
the classification of similar objects into different groups, or more precisely, the partitioning of a 
data set into subsets, called clusters. The goal is to create clusters that share some common trait 
that is a matchable expression pattern. Hierarchical clustering can be performed either for the 
genes (comparing biological sample expression profiles) or for the biological samples (comparing 
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gene-expression profiles). HCA uses distance measure to identify pairs of animals showing high 
similarity based on the expression of different genes (Figure 18.1). Within many steps the animals 
with the highest similarity are merged in a cluster, and then the process is repeated. The result of 
the analysis is a tree dendrogram displaying the distances between the individuals based on the 
expression of genes.56,57

Using hierarchical clustering a tree dendrogram can either be designed for the measured genes 
(in all samples) or for the samples (based on all measured expressed genes). Using a heatmap analy-
sis these two classifications can be combined, resulting in a two-dimensional color-coded descrip-
tion of the whole experimental matrix. It displays in a very convenient way all samples versus gene 
expression where each tile is colored with a different intensity according to all available data. Figure 
18.2 shows a heatmap created from a set of 10 regulated genes in 20 animals (10 untreated control 
calves and 10 calves treated with steroid hormones). In both figures applying clustering methods, a 
clear separation of the two treatment groups underlying hormone-dependent physiological expres-
sion pattern changes upon selected biomarkers are visualized. In the two-dimensional heatmap, 
additionally the gene clusters with comparable regulation kinetics are obvious.

18.4.2  Principal Components Analysis

A further useful biostatistical and visualization method to group data is principal component 
analysis (PCA). PCA is a mathematical procedure that converts a multidimensional data set into 
a lower number of variables called principal components (PC).57,58 The classification of the genes 
is based on unscaled Cq values and the overall changes of the gene-expression magnitudes.59 
The first principal component (PC1) represents the most significant PC, while gene-expression 
changes or variations in expression profiles are contained in the subsequent PCs. Inspecting the 
PC2, we see that treated and untreated individuals form two clusters that reflect the common 
biological functions and physiological processes of its members (Figure 18.3). Each analyzed 
animal will be represented by one spot which results from diminishing all significantly regulated 
genes of one specific sample to two PC. Variance from experimental study design conditions is 
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Figure 18.1  HCA of a set of 10 significantly regulated genes between 10 untreated control animals and 10 
animals, treated with steroid hormones.
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Figure 18.2  (See color insert.) Heatmap analysis of a set of 10 significantly regulated genes between 10 
untreated control animals and 10 animals, treated with steroid hormones.
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expected to be systematic, while confounding variance is expected to be random. Since the last 
PCs are derived from a very small amount of information, they can be considered to include noise 
or random information and can, therefore, be ignored. In this way, PCA can be a very efficient 
tool to separate systematic effects from noise.56

PCA has effectively been employed to visualize a treatment pattern in bovine tissues.24–26,48,60 In 
bovine liver, PCA results obtained from mRNA and miRNA expression in combination showed a 
better separation between the groups than by employing the results from each individual transcript 
type. In Figure 18.3, a PCA of a set of 10 significantly regulated genes between 10 untreated con-
trol animals and 10 animals treated with steroid hormones is displayed. The clear separation of the 
two treatment groups indicate that PCA is a good tool for pattern recognition in gene-expression 
biomarker research.

The advantage of the PCA in comparison to the HCA methods is obvious. PCA allows a 
much clearer recognition and more precise differentiation of the treatment groups, because 
the commonalities in gene-expression pattern are visualized by the symbol interspaces in two 
dimensions.

18.5 S oftware Tools

There are multiple software tools available to perform HCA, heatmaps, or PCA, either as stand-
alone software or as packages freely available on the Internet.

The “Genex” software package offers a lot of tools to analyze mRNA and miRNA expression 
data in a correct and MIQE compliant way (according to Ref. [61]). Genex with its multiple func-
tions helps to find and validate stable biomarkers (MultiD, Gothenburg, Sweden). More about the 
software, its functionality and the application of multidimensional data analysis is explained on the 
programmer’s webpage (www.multid.com).

The “Genevestigator” software tool (www.genevestigator.com) aims at detecting specific patterns 
of expression in a multi-dimensional expression space by including a very large number of condi-
tions processed from thousands of microarrays. The intuitive interface allows users easily to obtain 
lists of potential biomarker genes that can then be further validated using Genevestigator tools or in 
the laboratory. The classical clustering method (HCA) is for the grouping of genes according to their 
global pattern. Genevestigator provides several tools for clustering array data or meta-profiles.6,7 
The gene similarity is measured across all arrays or conditions. A dendrogram is applied to the clus-
tered matrix and indicates relationships between clusters. More advanced biclustering is a method 
that identifies groups of genes that have similar profiles in a subset of conditions, irrespective of 
their profile similarity in the other conditions. Recent studies have shown that biclustering performs 
better than methods that require similarity over all conditions.6,7

A further method to discover and validate expressed biomarkers is to use R programming lan-
guage, summarized in the “Bioconductor” project database (www.bioconductor.org). Bioconductor 
is an open source, open development software project to provide tools for the analysis and compre-
hension of high-throughput genomic data.62 There are multiple packages and meta-data packages 
available, which provide the analysis of various data sources, for example, DNA, mRNA, miRNA, 
transcriptomics, microarray, real-time RT-PCR, sequence, or SNP. The broad goal is to provide 
widespread access to a full range of powerful statistical and graphical methods for the analysis 
of transcriptomics data. For real-time PCR data analysis and normalization a bundle of projects 
are available, for example, “HTqPCR,” “qpcrNorm,” “SLqPCR,” or “ddCT” (summarized in “The 
qPCR library—Analysis of real-time PCR data using R”—http://www.dr-spiess.de/qpcR.html).63 
Further specialized packages for multidimensional expression analysis, PCA, HCA, or biomarker 
discovery are available in the database, for example, “BioMark” or “optBiomarker” project (http://
www.bioconductor.org/help/search/index.html?q=biomarker).

Comparing the software packages, “Genex” and “Genevestigator” are the more user friendly, 
because they are working on a windows-based environment. The “Bioconductor” packages 
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expect an advanced operator who is able to handle and modify the text-based input script lines. 
Further, the graphical output of the results is limited in style and generally very simple in 
appearance.

18.6 C onclusion

We have described how biomarkers can be discovered from quantitative mRNA and miRNA 
transcript studies using RT-qPCR data obtained from various hormone treatment experiments in 
farm animals. The application of new transcriptomics technologies has resulted in the discovery 
of new, regulated transcripts and yielded potential biomarkers or biomarker patterns. But one 
critical point in biomarker discovery is the heterogeneity in the population and the variance of 
the biological samples itself. The application of integrative functional informatics as a novel 
direction of biomarker identification and validation seems to be very promising. Hence, the 
quantity of analyzed transcripts, on various levels and in multiple organs, in combination with 
the applied statistical method will have an impact on the informative value and the validity of 
the biomarkers.

Despite this enormous potential, so far none of the biomarker candidates described is included 
in veterinary screening or routine diagnostics. There is still a lack of validation of these discovered 
candidates in multiple organisms, in various environments, under changing conditions, and for vet-
erinary research in multiple breeds. The existence of potential biomarkers is opening new insights 
in molecular diagnostics, an auspicious track to individualized treatment, or translated to human 
studies to future personalized medicine.
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